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SYMBOLS 

A l l  vectors  are denoted by lower case l e t t e r s .  

A l l  matrices are denoted by c a p i t a l  Roman letters.  

A l l  elements i n  the  matrices a r e  denoted by t h e  corresponding 

lower case Roman l e t t e r s .  

Small Roman 

i t h  row of t h e  matrix C 

base of t he  na tu ra l  system of logarithms 

constant parameter vector  

number of measurements 

system order  

number of inputs  

number of l i n e a r l y  independent rows of 0, t h a t  involve a 

mul t ip l ica t ion  by the  i t h  row of t he  observation matrix 

i t h  row of t he  matrix P 

a t t i t u d e  rate; the  quot ien t  of n/m; the  number of unknown 

parameters 

i t h  column of the  matrix Q 

remainder of n/m 

comp 1 ex number 

time 

f i n a l  time 

d i sc re t i zed  t i m e  

forward ve loc i ty ;  input  vec tor  

zero mean noise  

state vector  

output vector  

, 

i x  



di f fe rence  between y and yt 

output vec tor  i n  absence of uncer ta in ty  

state vector  

I 
l inear ized  approximation of,  ( ) 

i t h  component of t he  vector  ( ) 

element i n  the  i t h  row and j t h  column on the  matrix 

denoted by c a p i t a l  ( ) 

i t h  

i t h  row of t h e  matrix denoted by c a p i t a l  ( ) 

vector  i n  a sequence of vectors  

i t h  column of the  matrix denoted by c a p i t a l  ( ) 

nominal o r  i n i t i a l  es t imate  of ( ) 

t r i m  condition; i n i t i a l  conditions 

transpose of t he  vec tor  ( ) 

Capital  Roman 

Any c a p i t a l  l e t t e r s  t h a t  appear i n  the  t e x t  and which are not  - 
defined here  are constant  parameter matrices.  

A time varying matrix of s e n s i t i v i t y  funct ions 

por t ion  of t he  matr ix  of s e n s i t i v i t y  funct ions not  cor re la ted  *E 

with the known system input  

A t  . di f fe rence  between A and AE 

E{ 1 expected value of I 1 

I i d e n t i t y  matrix 

i n e r t i a  about t he  p i t c h  ax is  IY 
J l e a s t  squares funct ional  

L,,Lq,L6, p a r t i a l  de r iva t ives  of l i f t  with respec t  t o  a ,  q ,  and 6e, 

respec t ive ly  

A 
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M bI ,M6 p a r t i a l  der iva t ives  of moment with respec t  t o  a, q, and 6,, 
a ' C l  e 

respec t ive ly  

ob observabi l i ty  matrix (see sec t ion  3 . 2 )  

P covariance matrix; matrix used i n  construct ing the  

canonical transformation (see sec t ion  3 .2 )  

Q inverse  of  P 

T t h r u s t  

( I i  matrix ( ) mult ipl ied by i t s e l f  i times 

Small Greek 

a angle of attack 

0 

V 

Pi 

T 

vector  of unknown parameters 

per turba t ion  of ( ); u n i t  impulse funct ion 

e leva tor  de f l ec t ion  

Kronecker d e l t a  

e r r o r  

i t h  vec tor  i n  a sequence of vectors  used t o  generate  the  

s e n s i t i v i t y  funct ions 

vector  [ E l T  i CzT I 1 * * a] ; a t t i t u d e  

res idua ls  

sequence of vectors  

dummy va r i ab le  i n  the  convolution of two funct ions 

e r r o r  i n  ( ) 

j t h  

nominal o r  i n i t i a l  estimate o f  ( ) 

( ) E  

( 1; 
( ) N  

component of t h e  vec tor  ( ) i  

Subscripts and Superscr ipts  

i- 1 

s i  = 1 + c p j  
j=1 

i 

j=1 

x i  
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IDENTIFICATION OF SYSTEM PARAMETERS FROM 

INPUT-OUTPUT DATA WITH APPLICATION 

TO A I R  VEHICLES 

Dallas G .  Denery 

Ames Research Center 

SUMMARY 

r t  i s  concerned with measurement of t h  input and output 
*. 

t o  a dynamic system i n  order t o  estimate the  parameters i n  &e d i f fe ren-  

t i a l  equations t h a t  descr ibe the  input-output behavior. 

methods can be used t o  estimate these  parameters: 

motion method and t h e  response curve f i t t i n g  method. The equations of 

motion method is  character ized by a s i n g l e  s t e p  so lu t ion  t h a t  does not 

requi re  p r i o r  estimation of the  unknown parameters. However, unbiased 

noise i n  measurements of t h e  system response causes a b i a s  i n  the  e s t i -  

mated parameters. The response curve f i t t i n g  method i s  character ized by 

i t e r a t i v e  so lu t ion  techniques that requi re  p r i o r  es t imat ion of t he  

unknown parameters and provides an unbiased est imate .  

presented here  uses the  bes t  f ea tu re s  of both methods. 

Two general  

t he  equations of 

The algorithm 

If t h e  system 

noise i s  small, t he  algorithm does not  requi re  a p r i o r  es t imate  of the  

unknown parameters, and i f  t he  noise  has a zero mean, the  f i n a l  parameter 

estimates w i l l  not be biased. 

f l i g h t  da ta .  

The algorithm is  applied t o  simulated and 

A f e a t u r e  of t h i s  r epor t  i s  t h e  development of a canonical form f o r  

multioutput systems. 

i c a l  form, an i d e n t i f i a b l e  set  of parameters i s  defined and can be 

estimated by the  combined algorithm. Although o ther  canonical forms f o r  

mult ivar iable  systems are ava i lab le ,  the  parameters i n  those forms cannot 

When the  unknown system i s  modeled i n  t h i s  canon- 

be estimated d i r e c t l y  by t h e  combined algorithm. 



In  order t o  use t h e  combined algorithm, t h e  s e n s i t i v i t y  functions 

f o r  t h e  system parameters and i n i t i a l  conditions must be computed. 

constant c o e f f i c i e n t  l i n e a r  systems a l l  poss ib le  s e n s i t i v i t y  functions 

For 

can be obtained by l i n e a r  combinations of  t h e  so lu t ion  t o  only (p + 2) 

d i f f e r e n t i a l  equations of order n ,  where p i s  t h e  number of indepen- 

dent inputs  t o  t h e  system, and n is the  minimal order r e a l i z a t i o n  f o r  

the  system. 

than was previously thought t o  be necessary f o r  t h e  generation of t he  

s e n s i t i v i t y  functions.  

This i s  a smaller number of d i f f e r e n t i a l  equation so lu t ions  

An analogy is  es tab l i shed  between the  equations of motion theory 

developed by Shinbrot and the  concept of a s t a t e  observer as formulated 

and discussed by Luenberger and Bryson. I t  is  shown t h a t  observers of 

reduced order cm be designed q u i t e  e a s i l y  using t h e  equations of motion 

theory. 

2 



I INTRODUCTION 

The equations of motion for a flight vehicle describe its response 

to external disturbances and control inputs. They are based on Newton's 

laws as formulated by Euler (ref. 1). The forces in these equations are 

primarily aerodynamic, gravitational, and propulsive. These forces are 

functions of the vehicle state variables (position, velocity, angular 

orientation, and rate of change of angular orientation) and of the vehi- 

cle's control variables. If the deviations in the state and control 

variables from an equilibrium state are small, the vehicle's response 

can often be well approximated by a set of constant-coefficient linear 

equations. The coefficients in these constant-coefficient, linear, 

differential equations are called the stability derivatives. The sta- 

bility derivatives can be estimated from aerodynamic theory or  from 

wind-tunnel tests o r  both. 

be used to predict small perturbations of the vehicle response about 

The linearized equations of motion can then 

steady-state flight prior to flight. 

significant differences between the vehicle's predicted and actual 

Needless to say there are often 

response. These discrepancies can usually be attributed to errors in 

the estimates of the stability derivatives, and motivate the use of the 

flight data to improve the estimates of these stability derivatives. 

1.1 IDENTIFICATION TECHNIQUES 

The use of flight measurements to improve the estimates of the 

stability derivatives has been an area of  research throughout the history 

of aviation (ref. 2). The first work in this area appears to have 

occurred in the years 1922 - 1925. During this time the Natimal 

Advisory Committee for Aeronautics demonstrated the possibility of 



determining na tu ra l  frequencies,  damping r a t i o s ,  time constants ,  and 

s teady-s ta te  gains from f l i g h t  da ta  ( r e f s .  3, 4 ) .  The techniques 

developed during t h i s  period were used with l i t t l e  change f o r  the next 

20 years.  However, after World War 11, many cont r ibu t ions  were made t o  

the  ana lys i s  of f l i g h t  data .  

bas i s ,  the  r e s u l t s  obtained during the  years 1947 through 1953. 

Most of the  methods used today have, as a 

I t  was during t h i s  period t h a t  frequency response methods were 

f i rs t  applied t o  the  ana lys i s  of f l i g h t  da ta .  

t he  ana lys i s  of s teady-s ta te  o s c i l l a t o r y  responses as well as  the  anal-  

These methods included 

y s i s  of t r ans i en t  responses. 

s ta te  o s c i l l a t i o n  method ( r e f .  5) (taken from r e f .  Z), t he  e leva tor  of 

an a i rp l ane  was o s c i l l a t e d  by means of an au top i lo t  a t  a s e r i e s  o f  

frequencies (0.5 t o  approximately 1 .5  Hz) and the  response of the  a i r -  

plane was measured. 

es tab l i shed .  Although the-procedure worked s a t i s f a c t o r i l y ,  i t  required 

considerable f l i g h t  time. Attent ion was therefore  d i rec ted  t o  the  anal-  

y s i s  of da ta  from t r ans i en t  responses such as the  response t o  a pulse  i n  

e leva tor  def lec t ion .  The frequency response of the  vehic le  was obtained 

by taking the  Fourier transforms of the  input  and response measurements 

and forming t h e i r  r a t i o  a t  d i s c r e t e  frequencies ( r e f .  6 ) .  This proce- 

dure reduced the  required f l i g h t  time t o  a small f r ac t ion  of t h a t  necessary 

f o r  s teady-s ta te  o s c i l l a t i o n  tests. 

frequency response method, however, i s  t h a t  a frequency response curve 

i s  obtained ins tead  of the  parameters i n  the  equations of motion. 

Methods were developed f o r  curve f i t t i n g  a t r ans fe r  function of the  

In a p a r t i c u l a r  appl ica t ion  of the  steady- 

From these  da ta  a frequency response curve was 

An inherent  d i f f i c u l t y  i n  any 

4 



assumed form t o  the  measured frequency response curve i n  order t o  obtain 

an est imate  of the parameters. 

references 7 and 8. 

Some of these methods are discussed i n  

In  addi t ion t o  frequency response methods, severa l  other  parameter 

estimation procedures evolved during t h i s  period which could be used t o  

estimate the  coe f f i c i en t s  i n  the assumed equations of motion d i r e c t l y .  

Milliken c r e d i t s  Seckel with having categorized these  methods as being 

e i t h e r  equations of motion methods o r  as response curve f i t t i n g  methods 

( r e f .  2 ) .  

The equations of motion methods are formulated by s u b s t i t u t i n g  

measurements of the system var iab les  ( s t a t e s  and control  pos i t ions)  and 

t h e i r  de r iva t ives  i n  the  assumed equations of motion f o r  t he  system. 

The r e su l t i ng  equations a t  any d i s c r e t e  time are then a lgebra ic  i n  the  

unknown parameters. 

and the  parameters can be  estimated by t h e  so lu t ion  of a s e t  of l i n e a r  

equations. 

transforms of  the assumed equations of motion f o r  t he  system, and sub- 

s t i t u t i n g  i n t e g r a l  transforms of the  measurements i n t o  these  equations 

( r e f .  8 ) .  The ne t  r e s u l t  i s  s t i l l  a set  of equations which are a lgebra ic  

i n  the unknown coe f f i c i en t s .  

methods used t o  obtain coe f f i c i en t s  from frequency response curves could 

be considered as equations of motion methods, within t h i s  generalized 

in t e rp re t a t ion .  

l i n e a r  observers can a l s o  be considered as an appl ica t ion  of the  general-  

ized equations of motion theory.  This l a t te r  mater ia l  is not  d i r e c t l y  

r e l a t e d  t o  the  rest of the  t h e s i s  but  is included i n  appendix B as a 

matter of i n t e r e s t .  

In  many cases these  a lgebra ic  equations a r e  l i n e a r  

Shinbrot generalized t h i s  concept by considering i n t e g r a l  

Shinbrot showed t h a t  t he  curve f i t t i n g  

I t  is  shown i n  t h i s  repor t  t h a t  t he  construct ion of  

5 



In the  appl icat ion of an equations of motion method, there  a r e  

typ ica l ly  more equations than unknown parameters. A l e a s t  squares e r r o r  

c r i t e r i o n  is  therefore  used t o  estimate the  parameters. 

t h a t  t h i s  was not  a co r rec t  appl ica t ion  of t he  p r inc ip l e  of least squares 

if noise  was present  i n  the  measurements (ref. 9 ) .  In fact ,  t h i s  proce- 

I t  was rea l ized  

dure w i l l  cause a b ias  i n  the  parameter estimates even though the  noise  

i n  the  measurements has zero mean ( r e f s .  10, 11). By a b i a s ,  w e  mean 

t h a t  t h e  expected value of t he  e r ro r  i n  the  parameter estimates is  not 

zero and does not  go t o  zero with increasing amounts of data .  

The response curve f i t t i n g  methods were developed i n  order t o  apply 

the  p r inc ip l e  of l e a s t  squares cor rec t ly  ( r e f s .  7 ,  9, 12). I n  these  

methods, the  measured input is  used t o  d r ive  a model of the  vehicle .  

The unknown parameters i n  the  model a r e  then adjusted u n t i l  the  model 

response agrees with the  measured response i n  a least squares sense.  

has been shown t h a t  the  response curve f i t t i n g  methods do not cause a 

b i a s  t o  first order i n  the  parameter estimates i f  there  i s  no noise  i n  the  

measured input  and i f  t h e  noise  i n  the  measurements of t he  output has zero 

mean (refs. 10, 13). Because the  model response is a nonlinear funct ion 

of t he  unknown parameters, an i t e r a t i v e  estimation procedure i s  usua l ly  

I t  

~ 

required. 

unknown parameters. These included a gradient  procedure, a quasi-  

l i nea r i za t ion  procedure (referred t o  as a Taylor series method), and a 

re laxa t ion  procedure. 

techniques, he applied them t o  some a r t i f i c i a l  data .  However, because 

there  were no high-speed d i g i t a l  computers a t  t h a t  time, t h e  general 

f ee l ing  appeared t o  be t h a t  these  methods were not p rac t i ca l  ( r e f .  2).  

Shinbrot proposed severa l  such algorithms f o r  estimating the 

To i l l u s t r a t e  t he  f e a s i b i l i t y  o f  these  various 
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Frequency response methods and equations of motion methods were 

used almost exclusively f o r  analyzing f l i g h t  da ta  during the  next 

15 years.  

the  analog matching technique. In  t h i s  technique, t he  equations of 

motion f o r  an a i rp lane  are programmed on an analog computer and the  

unknown parameters are adjusted manually u n t i l  t h e  model response agrees 

with the  f l i g h t  measurements ( r e f .  14).  The idea  of using the  d i g i t a l  

computer t o  implement the  powerful techniques pioneered by Shinbrot and 

Greenberg f o r  systematical ly  adjust ing the  parameters was not  i nves t i -  

gated u n t i l  around 1966. A t  t h i s  time Bellman independently formulated 

a response curve f i t t i n g  method with emphasis on d i g i t a l  computer 

The only response curve f i t t i n g  method used t o  any extent  was 

implementation ( r e f .  15). In 1968, Cornel1 Aeronautical Laboratories 

applied t h i s  technique t o  some preliminary f l i g h t  da ta  ( r e f .  16) and i n  

1969, Lawrence Taylor of  t h e  F l igh t  Research Center independently applied 

a similar method t o  analyze rout ine  f l i g h t  records ( r e f .  17).  Taylor 

a l so  presented some comparisons -between parameter estimates obtained 

using the  response curve f i t t i n g  method ( re fer red  t o  as an approximated 

Newton Raphson Procedure) and the  more conventional equations of motion 

methods. The r e s u l t s  c l ea r ly  indicated t h a t  t he  response curve f i t t i n g  

method impfoved parameter estimates and t h a t  with the  d i g i t a l  computer 

these methods a r e  indeed p r a c t i c a l .  

P a r a l l e l  developments i n  ident i fy ing  parameters have occurred i n  

f i e l d s  other  than the  f i e l d  of av ia t ion .  The method of maximum l i k e l i -  

hood estimation i s  one approach which has achieved wide acclaim i n  the  

f i e l d s  of  econometrics and s t a t i s t i c s .  Cramer has s t a t e d  "From a theo- 

r e t i c a l  point  of view, the  most important general method of estimation so 

f a r  known i s  the  method of maximum likelihood" ( r e f .  18).  The response 
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curve f i t t i n g  methods developed within the f i e l d  of av ia t ion  can be 

considered as maximum l ikel ihood estimates i f  it i s  assumed t h a t  t he  

noise  i n  the measurements i s  gaussian and white, and t h a t  t he re  a r e  no 

unmeasured d is turb ing  forces .  

forces  i n  the  system, the response curve f i t t i n g  methods must be modified 

s l i g h t l y  i n  order t o  obtain maximum l ikel ihood estimates. The bas i c  idea 

i s  t h a t  instead of modeling the  unknown system by i ts  equations of motion, 

it should be modeled by i t s  optimal f i l t e r  ( r e f s .  19, 2 0 ) .  This idea  

has not y e t  been applied t o  t h e  ana lys i s  o f  f l i g h t  da ta ,  but  may provide 

If the re  are unmeasured random dis turb ing  

an improvement over t h e  conventional response curve f i t t i n g  methods i f  

the unmeasured disturbances are subs t an t i a l .  

Several  i d e n t i f i c a t i o n  procedures a r e  surveyed i n  g rea t e r  d e t a i l  i n  

The d i f f e r e n t  techniques are i l l u s t r a t e d  by using the  longi- Chapter 2. 

tud ina l  equations of motion f o r  a conventional a i r c r a f t  as an example. 

The purpose of t h i s  chapter is  t o  i l l u s t r a t e  t he  d i f fe rences  between the 

equations of motion methods and the  response curve f i t t i n g  methods. The 

mater ia l  i n  Chapter 2 forms t h e  foundation on which the  mater ia l  i n  t h i s  

t h e s i s  is  developed. 

1 . 2  A NEW COMBINED IDENTIFICATION ALGORITHM 

From the previous discussion,  it is evident t h a t  response curve 

f i t t i n g  methods a re  usua l ly  super ior  t o  the  equations of  motion methods 

f o r  estimating the  coe f f i c i en t s  i n  the  equations of motion f o r  an air- 

plane.  Nevertheless, equations of motion methods are usefu l  i n  obtaining 

i n i t i a l  estimates of t he  unknown parameters which can then be used t o  

s ta r t  a response curve f i t t i n g  algorithm. 

been used successfu l ly  i n  c e r t a i n  appl icat ions ( r e f s .  7,  9, 16) but  has 

required two separa te  es t imat ion algorithms. Taylor, on the other  hand, 

This two s t e p  procedure has 
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incorporated a s l i g h t  modification i n  a quas i - l inear iza t ion  response 

curve f i t t i n g  algorithm which eliminated the  necess i ty  of using a sepa- 

r a t e  procedure t o  obta in  an i n i t i a l  estimate of t he  unknown parameters 

(ref. 17). This elimination s impl i f ied  t h e  t o t a l  estimation problem and 

made t h e  procedure more adaptable f o r  t h e  rou t ine  ana lys i s  of f l i g h t  

data.  

Taylor showed s a t i s f a c t o r y  r e s u l t s  f o r  one appl ica t ion  where 

measurements of a l l  t he  output s t a t e s  were ava i lab le .  This t h e s i s  

extends h i s  procedure t o  the  mul t ivar iab le  case where the re  may be fewer 

measurements than s t a t e  va r i ab le s  i n  t h e  system model. This technique 

uses an equations of motion procedure, which is  similar t o  a l i n e a r  

observer, t o  ob ta in  a n . i n i t i a 1  es t imate  of t h e  parameters, then switches 

t o  a quas i - l i nea r i za t ion  response curve f i t t i n g  method. This p a r t i c u l a r  

equations of 

multioutput , 

equations of  

motion method can be applied t o  a general multi- input,  

constant coe f f i c i en t ,  l i n e a r  system whereas, previously,  

motion methods were generalized only t o  the  s i n g l e  input ,  
- 

single-output system. In  addi t ion ,  t h e  mathematical s t r u c t u r e  of t h i s  

equations of motion method is near ly  i d e n t i c a l  t o  the  mathematical s t ruc -  

t u r e  of t h e  quas i - l i nea r i za t ion  implementation of the  response curve 

f i t t i n g  procedure. Because of t h i s  s i m i l a r i t y ,  both procedures can be 

used i n  the  same computational s t r u c t u r e .  This process w i l l  be r e fe r r ed  

t o  as the  combined algorithm and i s  developed i n  Chapter I V .  

t h i s  mater ia l  has appeared i n  re ference  21. 

Some of 

In  Chapter V I ,  t h e  combined algorithm is  applied t o  t h e  i d e n t i f i c a -  

t i o n  of t h e  l i nea r i zed  longi tudina l  equations of motion of an a i rp lane .  

Both simulated and f l i g h t  d a t a  a r e  used. 

examples a r e  included. 

Both s i n g l e  and multioutput 

The e f f e c t  of i n t eg ra t ion  algorithms on the  
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i d e n t i f i c a t i o n  is  i l l u s t r a t e d .  The effects of i n i t i a l  conditions and 

b iases  i n  the  parameter i d e n t i f i c a t i o n  are a l s o  i l l u s t r a t e d .  

e t e r s  i n  a nonlinear set of d i f f e r e n t i a l  equations representing the  

longitudinal response of a VTOL aircraft are estimated from simulated 

da ta .  

Laboratory and was discussed a t  t h e  1970 JACC i n  the  spec ia l  sess ion  

e n t i t l e d ,  "Parameter I d e n t i f i c a t i o n  with Application t o  Ai rc ra f t  

The param- 

This la t ter  problem was posed by personnel a t  Cornel1 Aeronautical 

Modeling" ( r e f s .  22, 23). 

1 .3  IDENTIFIABILITY 

Given a mathematical model it is  usua l ly  not obvious whether o r  not 

t he  unknown parameters i n  the  model are i d e n t i f i a b l e  from input and 

response measurements. 

There a r e  two d i f f e r e n t  problems i n  e s t ab l i sh ing  t h e  i d e n t i f i a b i l i t y  

The first problem i s  t o  determine i f  the coe f f i c i en t s  of t he  parameters. 

i n  t he  system t r a n s f e r  func t ions  are i d e n t i f i a b l e  a f t e r  a l l  cance l l ing  

poles and zeros have been eliminated. T h i s  problem is  of ten  r e fe r r ed  t o  

as t h e  i d e n t i f i a b i l i t y  of t h e  system's ex terna l  descr ip t ion  and depends 

- 

on the  type of tes t  s igna l  used i n  t h e  i d e n t i f i c a t i o n .  

t h e  input t o  a single-output,  cons tan t -coef f ic ien t ,  l i n e a r  system i s  a 

s i n g l e  s inusoida l  o s c i l l a t i o n  and i f  t he  i n i t i a l  conditions allow no 

t r a n s i e n t s ,  then the  input  and output can be r ea l i zed  by a f i r s t - o r d e r  

system regard less  of t h e  ac tua l  system dynamics. Tne importance of t h i s  

problem i n  ident i fy ing  a i r c r a f t  parameters w a s  recognized i n  1947 - 1953 

and a s u b s t a n t i a l  amount of research was conducted i n  defining good 

input  t e s t  s i g n a l s .  

by Mill iken i n  the  following statement ( r e f .  2) : "It would appear t h a t  

an optimum input i n  a given case is  t h a t  which b e s t  exc i t e s  t he  frequency 

For example, i f  

The r e s u l t s  of these  e f f o r t s  were w e l l  summarized 
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range of i n t e r e s t ,  and hence i t s  harmonic content ( the input  s igna l )  

should be examined before  the  tes t  t o  insure  t h a t  it is sui table ."  

Although t h i s  type of evaluation has been usefu l  and i s  s t i l l  the  primary 

tes t  used t o  de f ine  a good input  s igna l ,  it is a q u a l i t a t i v e  procedure 

and does not  def ine  an optimum test  s igna l .  

perhaps usefu l  t o  def ine  a more quan t i t a t ive  procedure f o r  designing 

input  test  s igna l s ,  but  t h i s  problem i s  not inves t iga ted  here.  

I t  would be i n t e r e s t i n g  and 

The second problem i s  t o  determine the  i d e n t i f i a b i l i t y  of  the  

coeff ic ie i i ts  o r  s t a b i l i t y  der iva t ives  i n  the  equations of motion f o r  t h e  

system. This i s  r e fe r r ed  t o  as t h e  i d e n t i f i a b i l i t y  of an i n t e r n a l  

descr ip t ion  of the  system. Greenberg ( r e f .  7) pointed out t h a t  t he re  a r e  

bas i c  l imi t a t ions  i n  the  determination of the  s t a b i l i t y  der iva t ives  i n  a 

p a r t i c u l a r  set  of d i f f e r e n t i a l  equations as compared t o  the  determina- 

t i o n  of the  t r a n s f e r  funct ion coe f f i c i en t s .  In  p a r t i c u l a r ,  he s tudied 

the fundamental mathematical ~ l imi t a t ions  on the  number of der iva t ives  

t h a t  can be i so l a t ed  from f l i g h t  records i n  the  longi tudina l  case. 

Although the  i d e n t i f i a b i l i t y  of t h e  system's ex terna l  descr ip t ion  

implies t he  i d e n t i f i a b i l i t y  of the  t r s n s f e r  funct ion coe f f i c i en t s ,  these 

coe f f i c i en t s  can be expressed i n  terms of a more fundamental set  (with 

t h e  t r i v i a l  exception of the s ing le- input ,  single-output system) ca l l ed  

canonical parameters. These parameters can be used i n  a set  of d i f f e r -  

e n t i a l  equations, ca l l ed  canonical equations,  which r e l a t e  the system's 

input  t o  i t s  response. 

transformations on the  equations of motion f o r  t he  vehicle .  

ex te rna l  descr ip t ion  of a vehic le  is i d e n t i f i a b l e ,  the  parameters i n  the  

canonical equations a r e  i d e n t i f i a b l e .  

t o  put  t he  equations i n t o  a canonical form. 

The canonical equations can be obtained by l i n e a r  

If the  

I t  i s  therefore  of ten  convenient 

The canonical parameters a r e  
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r e l a t e d  t o  the  s t a b i l i t y  de r iva t ives  and if the  s t a b i l i t y  de r iva t ives  

a r e  i d e n t i f i a b l e ,  they can be computed as a function of the  canonical 

parameters. Although the re  a r e  many canonical forms, t h e  parameters i n  

many of them are not located i n  t h e  matrices so t h a t  they can be 

i d e n t i f i e d  d i r e c t l y  by the  combined algorithm ( r e f s .  24, 25, 26). 

I n  t h i s  r epor t  a canonical form f o r  multioutput systems i s  

pTesented which is analogous t o  a canonical form developed by Luenberger 

f o r  multi-input systems ( r e f .  24). The f i n a l  s t r u c t u r e  of the  canonical 

form presented here is  more defined than t h e  one i n  re ference  24, and the  

parame:ers can be uniquely i d e n t i f i e d  from measurements of the  system 

input and i t s  response. 

they can be i d e n t i f i e d  d i r e c t l y  by t h e  combined algorithm. 

i c a l  form i s  usefu l  i n  i l l u s t r a t i n g  the  gene ra l i t y  of t h e  combined 

algorithm and i s  presented i n  Chapter 111, before the  algorithm is  

developed. 

1.4 COMPUTATIONAL METHODS- 

In addi t ion ,  t h e  parameters a r e  located s o  t h a t  

This canon- 

If response curve f i t t i n g  methods a r e  implemented by gradient 

algorithms, it i s  necessary t o  compute t h e  system's s e n s i t i v i t y  func- 

t i o n s .  These functions are the  f i r s t - o r d e r  va r i a t ions  of the system 

s ta te  due t o  u n i t  per turba t ions  i n  t h e  unknown parameters. Each sens i -  

t i v i t y  function can generally be computed by the  numerical so lu t ion  of a 

set  of d i f f e r e n t i a l  equations of order equal t o  t h a t  of t he  system. 

Astr& has shown t h a t  t h e  computations required t o  obtain these  sens i -  

t i v i t i e s  can be reduced f o r  t h e  t i m e  i nva r i an t ,  l i n e a r ,  s i n g l e  input ,  

s i n g l e  output, d i s c r e t e  problem ( r e f .  20). A s t r 6 m ' s  r e s u l t s  provided t h e  

motivation t o  inves t iga t e  t h e  p o s s i b i l i t y  of 

f o r  the  time inva r i an t ,  l i n e a r ,  multi- input,  

problem. 

12  
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Wilkie and Perkins ( r e f .  27) a l s o  inves t iga ted  t h i s  problem, but  

the method developed here  requi res  the  so lu t ion  of p fewer nth order  

d i f f e r e n t i a l  equations than t h e i r  method (where p i s  the  number of 

independent inputs  t o  the  system, and n is t h e  system order ) .  

I t  i s  shown i n  Chapter V t h a t  i f  t he  system i s  cycl ic , ’  t he  

s e n s i t i v i t y  funct ions ( for  the  system parameters and i n i t i a l  conditions) 

and the  system response can be obtained by l i n e a r  combinations of t he  

so lu t ions  t o  (p + 2) n th  order  d i f f e r e n t i a l  equations.  Gopinath and 

Lange ( r e f .  28) have shown t h a t  i f  a system i s  no t  cyc l i c ,  it contains 

two o r  more i d e n t i c a l  and completely uncoupled subsystems imbedded i n  

the  o r i g i n a l  system. This i s  a l so  manifest i n  t h e  Jordan form f o r  t he  

s t a t e  coe f f i c i en t  matrix of a noncyclic system. 

can therefore  be appl ied t o  each subsystem t o  obta in  s e n s i t i v i t y  func- 

t i ons  f o r  the  noncyclic case. Because many of  t he  s e n s i t i v i t y  funct ions 

w i l l  be the  same f o r  the  two independent subsystems, fewer than (p + 2) 

nth 

t i ons  are a l s o  made i n  Chapter V f o r  s implifying the  computation of the  

matrix of the in tegra ted  squares of the  s e n s i t i v i t y  funct ions.  This 

matrix is  used i n  the  method of quas i - l i nea r i za t ion  and i n  the  combined 

algorithm. 

The technique presented 

order  equations may be required i n  the  noncyclic case. Some sugges- 

l A  system with s t a t e  coe f f i c i en t  matrix F i s  cyc l i c  i f  t he re  i s  a 

1 . . . I 2 a r e  l i n e a r l y  [Fn-’2 I ‘ I  vector  2 so  t h a t  t he  n vectors  

independent . 
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I1 A SURVEY OF TECHNIQUES FOR ESTIMATING SYSTEM 

PARAMETERS FROM INPUT-OUTPUT DATA 

2 . 1  EQUATIONS OF MOTION METHODS 

2.1.1 Formulation 

There are severa l  d i f f e r e n t  equations of motion methods bu t  t h e i r  

main fea tures  are i l l u s t r a t e d  by t h e  following two examples. A general  

discussion w i l l  then be presented. 

Example 2 . 1  The Derivat ive Method (Refs. 7 ,  8) 

Given measurements of t h e  a t t i t u d e  rate, angle of a t t ack ,  t h e  

der iva t ives  of the  a t t i t u d e  ra te  and angle of a t t ack  ( these can be 

obtained i n d i r e c t l y  from accelerometers),  and t h e  e leva tor  de f l ec t ion ,  

consider t he  i d e n t i f i c a t i o n  of t he  parameters i n  the  short-period 

equations of motion f o r  a conventional a i rp lane .  

The equations of motion are: 

Plunge equation: muo& +_(La + T)a - muoq = -Lge6e 

-M.& - M a ~  + 1 4  - M q = M6 6, a Y 9 e Pi tch  equation: 

If 6 i s  eliminated from the  second equation, (2.1) can be rewr i t ten :  

+ 

Since measurements of a l l  t h e  system var iab les  and t h e i r  de r iva t ives  are 

ava i lab le ,  they can be used i n  equation ( 2 . 2 )  a t  d i s c r e t e  times, ti, t o  

give a set of a lgebra ic  equations t h a t  are l i n e a r  i n  the  f i v e  unknown 

parameters; 
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Mq +Mi 

I Y  
( 2 . 3 )  

If t h e  first equation i s  used a t  two d i f f e r e n t  times and t h e  t h i r d  a t  

th ree  d i f f e r e n t  times, we w i l l  have f i v e  equations which, i f  independent, 

can be solved f o r  t h e  unknown parameters. 

Typically,  t he re  w i l l  be more than f i v e  equations ava i l ab le  i f  a l l  

t he  measurements are used. Because of modeling e r r o r s  and uncertainty 

i n  the  measurements, a so lu t ion  t o  t h i s  enlarged s e t  of equations w i l l  

probably not  e x i s t .  A method o f t en  used t o  de f ine  an est imate  of the  
- 

parameters i s  t o  choose them so t h a t  they minimize a weighted sum of the  

squared d i f fe rences  between t h e  two s ides  of  t he  equations.  If 

equation ( 2 . 3 )  is wr i t t en  succ inc t ly  as 

where y is the  vec tor  of unknown parameters and € ( t i )  is the  e r r o r  i n  

these  equations due t o  t h e  uncertainty i n  the  modeling o r  measurements, 

then an estimate of y,  T, i s  t h a t  y which minimizes t h e  funct ion 

i= 1 
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where W 

confidence i n  the  d i f f e r e n t  measurements. To compute d i f f e r e n t i a t e  

i s  a p o s i t i v e  d e f i n i t e  matrix used t o  express the  r e l a t i v e  

J 

equal t o  zero and so lve  f o r  y. This gives the  well-known so lu t ion  

with respec t  t o  the  unknown parameters, se t  the  r e su l t i ng  equations 

In many appl ica t ions  measurements of some of t he  var iab les  o r  

der iva t ives  of the  var iab les  are not  ava i lab le .  If a va r i ab le  but  not  

i t s  de r iva t ive  i s  measured, it i s  tempting t o  d i f f e r e n t i a t e  t he  measured 

va r i ab le  i n  order t o  use a procedure similar t o  t h a t  discussed i n  

example 2 .1 .  However, t he  d i f f e r e n t i a t i o n  of measured da ta  introduces 

addi t iona l  uncer ta in ty  s o  t h a t  t h i s  technique i s  usua l ly  inaccurate .  

The i n t e g r a l  transform methods el iminate  the  d i f f i c u l t y .  

Example 2 . 2  The Laplace Transform Method (Refs. 7 ,  8) 

Consider the previous example with the  exception t h a t  only t h e  
- 

a t t i t u d e  r a t e  and elevator  de f l ec t ion  a r e  measured. 

The d i f f e r e n t i a l  equation t h a t  r e l a t e s  t he  a t t i t u d e  r a t e  t o  the  

e leva tor  de f l ec t ion  i s  given by el iminat ing 01 from 2.1: 

and the  Laplace transform is given by2 

2Zero i n i t i a l  conditions have been assumed i n  t h i s  example. If the  

i n i t i a l  conditions are not zero, they could be included i n  equation (2.8) 

and t r ea t ed  as addi t iona l  unknown parameters. 
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The Laplace transform of the  measurements 

numerically f o r  d i s c r e t e  values o f  

q and 6, can be computed 

s ,  

and used i n  equation (2.8) t o  obtain a set  of a lgebraic  equations tha t  

are l i nea r  i n  the unknown coe f f i c i en t s ,  
- 

M +M. (La+TJ 9- 
=Y mu0 

Since s i s  general ly  a complex number, each value of s r e s u l t s  i n  two 

equations. 

d i f f e r e n t  values of 

If four  independent equations can be obtained by using 

s, they can be solved f o r  the  unknown coe f f i c i en t s .  

17 



As i n  example 2.1,  more than four equations can be obtained by using 

addi t iona l  values of s i n  (2.9).  An estimate of the  parameters can 

then be defined by a weighted least squares procedure i d e n t i c a l  t o  t h a t  

d i scwsed  below example 2.1. The argument i n  equations (2.5) and (2.6) 

would be S i  ins tead  of ti. 

The general formulation of the  equations of motion method is  now 

evident.  

system are hypothesized. 

the  system va r i ab le s ,  t h e i r  de r iva t ives ,  and the  system parameters. 

They a r e  mul t ip l ied  by a s e t  of functions,  ca l l ed  method functions,  and 

a r e  in tegra ted  over a time i n t e r v a l .  

method functions are delayed impulses, 6 ( t  - t i ) .  In  the  Laplace t rans-  

form method, the  method functions are the  exponential func t ions ,  e 

A se t  of equations t h a t  describe the  dynamic response of t he  

These equations provide r e l a t ionsh ips  among 

In  the  de r iva t ive  method, t h e  

-sit 

Regardless of t he  type of method function, t h i s  procedure r e s u l t s  i n  an 

a r b i t r a r i l y  l a rge  set  of a lgebra ic  equations t h a t  can be solved f o r  t h e  

unknown parameters. 
- 

The p a r t i c u l a r  set  of method functions used 

determines t h e  s p e c i f i c  equations of motion method. 

These ideas have been extended t o  nonlinear systems (ref. 8) and t o  

time varying systems ( r e f s .  11, 29). I t  is  shown i n  appendix B t h a t  

these  ideas can a l s o  be used t o  design observers of reduced order.  

2 . 1 . 2  Ef fec ts  of  Noise 

A weighted least squares estimate f o r  t he  parameters was introduced 

i n  the  above discussion i n  order t o  estimate the  parameters i n  t h e  

presence of uncer ta in ty  o r  noise.  This technique works b e s t  when t h e  

e r ro r s ,  E ,  i n  equations (2.4) are not dependent on the  parameters, y. 

(Errors i n  the  determination of y would be of t h i s  type.) In  the  

equations of motion method, A i s  a l s o  composed of measurements and i s  

18 



I. 

t he refore  subjec t  t o  uncer ta in ty .  This uncer ta in ty  causes the  e r ro r ,  E, 

i n  equation (2.4) t o  depend on y. This dependence causes b i a s  i n  the  

parameter estimates ( i . e . ,  t he  expected value of the  e r r o r  i n  the  param- 

e t e r  estimates i s  not  zero) even though t h e  uncer ta in ty  may be caused by 

system noise  with zero mean ( r e f .  4 ) .  This idea  is  i l l u s t r a t e d  by t h e  

following example. The idea  w i l l  then be general ized.  

Example 2 . 3  

Consider a system described by 

Effect  of Noise on an Equations of  Motion Estimate 

x + a x = u  

Let us assume t h a t  w e  have pe r fec t  measurements of u and x but  t h a t  

the measurement of x contains a small zero mean random b i a s  which i s  

not accounted f o r .  Denote these measurements by the  subscr ip t  m. 

I f  the  de r iva t ive  method i s  used, an est imate  f o r  t h e  parameter a is 

obtained by solving the a lgebra ic  equation 

X + g(x + n i )  = u 

which implies 

A u - x  - - u - x  a =  x + nl  

I f  w e  assume t h a t  nl  << x, the  r i g h t  s i d e  of t h i s  equation can be 

expanded i n  a power series 

and the  expected value of  2 can be approximated by 
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which implies t h a t  

and the  estimate i s  s a i d  t o  be biased. 

Let us de f ine  A( ) and y (  ) i n  equation (2.4) f o r  a d i s c r e t e  value 

of the  argument by 

computed A i  and yi can be broken i n t o  two p a r t s  

A i  and y', respec t ive ly .  The components of the  

y i  = y; + y; J 
(2.10) 

where A t i  and y i  

which the  equal i ty  (2.4) holds with E equzl t o  zero, 

a r e  defined as those por t ions  of  A i  and yi f o r  

(2.11) i 
Yt = A t i Y  

If  these  de f in i t i ons  a r e  used, then is  t h e  so lu t ion  of 
- 

i= 1 i= 1 

(2.12) 

and y i s  the  so lu t ion  of 

rk 1 k 

Se t  y equal t o  9 + (y - T )  i n  equation (2.13) and sub t r ac t  equa- 

t i o n  (2.13) from (2.12) i n  order t o  obta in  

(2.13) 
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k k 

1 1 i 
i= 1 i= 1 

K . W A c i  + A,. T WAti + A&WA, ] ? - [.TiWAti] [y - ?] 

k 
T i  T 

= x[AziWyti + A,. Wy, + AtiWy:] (2.14) 
I 

i= 1 

The r e s u l t  implies t h a t  t he  e r r o r  i n  the  parameter estimates i s  given by 

f+f& = [Y - ?I = 

k 
+ c (AT.WA, + A,.WAti T + A T .WAEi)?] ti i 1 €1 

i= 1 

The expected e r r o r  i s  given by 

EC6yE) = 

i= 1 

(2.15) 

(2.16) 

where it has been assumed t h a t  y i  and AEi are zero mean and independent 

i of A t i  and yt. I t  has a l s o  been assumed t h a t  A t i  and yi t a r e  de te r -  

min i s t i c  quan t i t i e s  (although unknown). If t h e r e  i s  any addi t ive  noise  

i n  the system, t h i s  expression i s  usua l ly  not  equal t o  zero; t he re fo re  

the  parameter estimates are biased.  

Comment: One well-known exception is  the  constant  c o e f f i c i e n t ,  

l i nea r ,  d i s c r e t e  problem with no numerator dynamics; with zero mean, 

independent, and gaussian process noise;  and with no measurement noise .  

If the parameters are estimated by a procedure similar t o  the  de r iva t ive  

method, t he  equivalent AEi w i l l  be zero.  This implies t h a t  the  
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expected e r r o r  i n  the parameter estimates i s  zero. These estimates are 

unbiased because the  s ta te  a t  any i n s t a n t  of time is  not  dependent on 

the  noise  a t  t h a t  i n s t a n t  of time. This same idea  can be extended t o  the  

analogous continuous system, i f  the  in t eg ra t ion  algorithm is  defined so  

t h a t  t he  s t a t e  is  not  cor re la ted  with the  noise  a t  any i n s t a n t  of time. 

2 .2  RESPONSE CURVE FITTING METHODS 

2 .2 .1  Formulation 

Let us consider systems t h a t  are modeled by equations of t h e  form 

i = f ( 2 ,  u ,  6 ,  t )  2(0) = xo 

f = h(?, u ,  E ,  t )  
(2.17) 

where 

X an n x 1 s t a t e  vector  

U a p x 1 input  vector  

6 a vec tor  of unknown parameters i n  f and h 

?o 

Y an m x 1 model response vector  

The response curve f i t t i n g  methods are formulated by ad jus t ing  the  

parameters i n  6 
response vector ,  f ,  agrees,  i n  some sense, with the  measured response, y. 

The c r i t e r i o n  of ten  used t o  ad jus t  t h e  unknown parameters i n  the  model 

i s  t o  minimize the  funct ion 

h 

a vec tor  of i n i t i a l  conditions,  some of  which may be unknown 
h 

and t h e  unknown i n i t i a l  conditions u n t i l  t he  model 

i n  t h e  d i s c r e t e  case, o r  t he  funct ion 

(2.18) 

(2.19) 
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i n  the  continuous case. The pos i t i ve  d e f i n i t e  weighting matrix W is 

used t o  express the  r e l a t i v e  confidence i n  the  measurements. 

Because t h e  model response i s  general ly  a nonlinear funct ion of t he  

unknown parameters, equation (2.18) or  (2.19) must be minimized by an 

i t e r a t i v e  procedure. In  t h i s  repor t ,  the  method of quas i - l inear iza t ion  

is used. 

method, quas i - l inear iza t ion ,  and t h e  second-order Newton-Raphson method 

is i l l u s t r a t e d  i n  appendix A f o r  t h i s  p a r t i c u l a r  problem. 

An in t e re s t ing  r e l a t ionsh ip  between the  f i r s t - o r d e r  gradient  

The bas i c  idea behind t h e  method of quas i - l inear iza t ion  i s  t h a t  the  

model response 

approximated by a nominal response based on an i n i t i a l  estimate of the  

unknown parameters, plus  a l inear ized  correct ion about t h i s  nominal 

response ( r e f s .  13, 15). This approximation i s  given by 

p, which minimizes equation (2.18) or  (2.19), can be 

where 

and 

~ 

6x(O) = 6xo 

(2.20) 

(2.21) 

(2.22) 

The subscr ip t ,  N, r e f e r s  t o  the  i n i t i a l  estimate of t h e  system parameters 

and the  corresponding nominal response; i s  t h e  l inear ized  
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approximation of 

parameters. Within t h i s  approximation 6y i s  a l i n e a r  function of t he  

per turba t ions  i n  t h e  parameter 6 and unknown i n i t i a l  conditions.  This 

9 based on t h e  i n i t i a l  estimate of t h e  unknown 

i s  evident when 6y 

matrix,  @ ( t ,  T ) .  

i s  expressed i n  terms o f  t he  system t r a n s i t i o n  

If y i s  a s i n g l e  vec tor  containing both t h e  unknown parameters i n  

and t h e  unknown i n i t i a l  conditions,  then 6y can be expressed as 

6y = A(t)Gy (2.23) 

The t i m e  h i s t o r i e s  i n  the  matrix A(t) are the  numerical so lu t ions  of 

t he  d i f f e r e n t i a l  equations 
- 

where yi i s  the  i t h  parameter i n  the  vec tor  y and y y . ( t )  is  t h e  i t h  

column of A( t ) .  
1 

If iA is used i n  (2.18) o r  (2.19) i n  p lace  of F, t h e  problem i s  

reduced t o  the  minimization of a quadra t ic  form similar t o  t h a t  discussed 

i n  example 2.1. The estimate f o r  6y is  given by 
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o r  

respec t ive ly .  

t he  i n i t i a l  estimates with t h e  estimate o f  t he  e r r o r ,  6y. I n  t h i s  way 

A new estimate of t h e  parameters is obtained by cor rec t ing  

a n ' i t e r a t i v e  procedure i s  es tab l i shed  f o r  minimizing the  function J .  

Kalaba ( r e f .  30) inves t iga ted  various aspects of t h e  convergence 

proper t ies  of t h i s  algorithm. 

This procedure i s  applied t o  a nonlinear problem i n  Chapter V I .  

Comment: P r io r  estimates of t h e  unknown parameters can be incor- 

porated i n  t h e  i d e n t i f i c a t i o n  by including t h i s  information i n  the  cos t  

function, 
- 

where A is  a weighting which expresses t h e  r e l a t i v e  confidence i n  

these  p r i o r ,  estimates and yp is  the  p r i o r  estimate.  The estimate f o r  

6y i s  given by 

2 . 2 . 2  Effects of Noise (Maximum Likelihood Estimation) 

The measured response can be considered as t h e  summation of two 

components, 

Y = Y t + E  (2.25) 
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where yt is the  system response caused by the  known input  u( t )  and 

i n i t i a l  conditions,  and E(t) i s  the  d i f fe rence  between t h e  measured 

response and yt. If t h e  response curve f i t t i n g  method has converged t o  

a reasonably good estimate of t he  parameters, YN, the  d i f fe rence  between 

the  model response yN and yt can be approximated by t h e  l inear ized  

equations, 

If qua t i  (2.25) 

is  given by 

nd (2.26) a re  used i n  (2.24), t h  e 

c 

6 q  = ktf ATWA d 4 - l  [ ltf ATW(& + AGy)dt 1 
= ktf ATWA-dt]-’ [atf ATWc dt] + 6y 

(2.26) 

timate f o r  6y 

which implies t h a t  t he  e r ro r  i n  the  f i n a l  parameter estimate i s  

6yE = 6; - 6y = [ltf ATWA dt1-l  [ltf ATW& dt] 

(2.27) 

(2.28) 

This l inear ized  approximation i s  equivalent t o  assuming t h a t  t he  gradient  

of t he  model response, A(t) ,  is  not a f fec ted  by the  errors i n  the  param- 

e t e r  estimates and i s  therefore  de te rminis t ic .  

6yE is  given by 

The expected value of 

(2.29) 
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which equals zero i f  E ( t )  is zero mean. This r e s u l t  does no t  depend on 

E(t) being white. Therefore, we can conclude t h a t  response curve f i t t i n g  

methods g ive  unbiased estimates, t o  first order,  whether t he re  i s  process 

noise i n  t h e  system o r  measurement noise.  The above r e s u l t s  do not ,  how- 

ever, apply i f  t he re  i s  noise  i n  t h e  measurements of t he  input  u. This 

type of noise  must be t r e a t e d  d i f f e r e n t l y  than process noise.  

The variance of t he  e r r o r s  i n  the  parameter estimates i s  given by 

(2.30) 

An estimate of t he  variance can be computed s ince  [Ltf ATWA dt] and 

A(t) are computed during t h e  i d e n t i f i c a t i o n  and the  

estimated f o r  ergodic processes by taking t h e  au tocorre la t ion  of t he  

r e s idua l s  ( the  d i f f e rence  between the  model response and t h e  measure- 

ments). Under the  spec ia l  condition t h a t  t he  noise,  E(t) , is white and 

the  weighting matrix i s  chosen s o  t h a t  

E(E(t)ET(T)) can be 

E{c(t)ET(T)) = W-l6(t - T) (2.31) 

equation (2.31) reduces t o  

-1 

E{Gy,GyZI = [ltf ATWA dt] (2.32) 

The r e s u l t s  f o r  the  d i s c r e t e  problem are analogous and can be 

obtained by replacing the  i n t e g r a l s  i n  equations (2.27) t o  (2.32) by 

summations. 

M a x i m u m  Likelihood Estimation: A maximum likelihood estimate f o r  

the  parameters may be obtained i f  the  p robab i l i t y  dens i ty  func t ion  f o r  

the  measured response i s  known as a function of t he  unknown parameters. 
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If the  p robab i l i t y  dens i ty  function i s  evaluated a t  t h e  s p e c i f i c  set  of 

measurements, it becomes a function only of t h e  unknown parameters and 

i s  ca l l ed  the  l ike l ihood function. The maximum likelihood estimate is  

t h e  set of parameters t h a t  maximizes the  l ike l ihood function. The usual 

procedure f o r  def in ing  t h e  l ikelihood function is  t o  whiten t h e  measured 

response by a causal and i n v e r t i b l e  transformation. 

Example 2 . 4  Maximum Likelihood Estimation i n  the  Presence of 

Purely Random Gaussian Measurement Noise 

Consider a system described by t h e  equations 

I x = f ( x , u , @ , t )  x(0) = xo 

y = h(x ,u ,@, t )  + E ( t )  

(2 .33 )  

Let y ( t )  be sampled a t  d i s c r e t e  times, 

and assume t h a t  t he  j o i n t  p robab i l i t y  dens i ty  function of t he  sequence 

& ( t i ) ,  i = 1, 2 ,  . . . i s  gaussian with co r re l a t ion  

- 

EIE( t i )ET( t j )  I = R 6 i j  (2.35) 

If t h i s  system i s  modeled by equation (2.17) with 

then the  d i f fe rence  between y and f i s  equal t o  E( t ) .  The d i f fe rence  

between y and w i l l  be denoted by v ( t ) ,  

= @ and ;o = xo, 

where v ( t )  i s  a func t ion  of q .  If w e  evaluate the  p robab i l i t y  dens i ty  

func t ion  of & ( t i )  using the  sequence v ( t i ) ,  t he  p robab i l i t y  dens i ty  

func t ion  becomes a func t ion  of 

f o r  t he  system, 

9 and i s  a l ike l ihood func t ion  (L.F . )  
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Maximizing t h i s  funct ion is  equivalent  t o  minimizing i t s  logarithm o r ,  

i n  o ther  words, t h e  maximum l ikel ihood estimate is obtained by t h e  

minimization of  t h e  funct ion 

(2.38) 

with r e spec t  t o  the  unknown parameters i n  the  cons t r a in t  equations where 

and ? ( t i )  is  given by equation (2.17). If R is  known, t h e  procedure 

i s  i d e n t i c a l  t o  t h e  response curve f i t t i n g  method. If R is  unknown, 

it can be estimated i t e r a t i v e l y  by computing t h e  mean square of t he  
- 

res idua ls .  

Example 2.5 Maximum Likelihood Estimation i n  the  Presence of Purely 

- Random Gaussian Process Noise and Measurement Noise 

(Ref. 19) 

Let us consider a system described on the  equations 

= FX + GU + v x(0) = xo 

y = H x + w  
(2.40) 

where v and w are zero mean, white noise ,  gaussian processes.  Let 

y ( t )  be sampled a t  d i s c r e t e  times, 

and l e t  t h e  co r re l a t ion  of w( t i )  be 

(2.41) 

(2.42) 

29 



Let the  cor re la t ion  of v ( t )  be 

E(v(t)vT(T)) = Q6(t - T) (2.43) 

The optimal f i l t e r  f o r  t h i s  system i s  given by ( r e f s .  31 and 32): 

I t  has been shown t h a t  t h e  res idua ls ,  & ( t i ) ,  f o r  t he  f i l t e r  a r e  gaussian 

and white ( r e f .  32). Therefore the  probabi l i ty  densi ty  function f o r  t he  

res idua ls  o r  innovations can be used t o  def ine a l ikel ihood function. 

Under the  spec ia l  assumption t h a t  the innovations a r e  s ta t ionary ,  

the  equations f o r  the  optimal f i l t e r  a re  simply 

30 



and t h e  parameters i n  K a r e  constant.  If we use these equations t o  

model the unknown system, and define the  difference between y and 7 as 

v, v ( t i )  = Y(ti)  - f ( t i / t i - I ) ,  then the  l ikel ihood funct ion for  t h e  sys- 

t e m  can be obtained by evaluating the probabi l i ty  densi ty  funct ion of t he  

innovations a t  the  sequence of res idua ls ,  v ( t i ) .  The v ( t i )  a r e  a 

function of the  unknown system parameters as  w e l l  as the  f i l t e r  gains,  

K,  and the  maximum likelihood estimate is obtained by minimizing the  

quant i ty  

(2.46) 

with respect  t o  t he  unknown parameters i n  the  cons t ra in t  equations, 

(2.45). The matrix B i n  equation (2.46) is  the  covariance of the 

res idua ls .  

The parameter estimates obtained by t h i s  procedure a r e  cons is ten t  

and asymptotically e f f i c i e n t .  A s  the  amount of da ta  increases ,  the  

statist ics of t he  e r ro r s  i n  the  parameter estimates approach 

E{&y,) = 0 (2.47) 

(2.48) 

where 

unknown parameters. For  a rigorous discussion on these proper t ies ,  t he  

reader should see references 20, 33, and 34. 

A( t i )  is  the  gradient  of t he  model response with respect  t o  the  



The above r e s u l t s  do not  apply i f  there  i s  noise  i n  the  measurements 

This type of no ise  is not t he  same as process noise  and of the  input  u. 

i ts  presence w i l l  cause a b i a s  i n  the  parameter estimates i f  the  above 

procedure i s  used. 
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I11 STATIONARY LINEAR SYSTEMS 

3.1 BACKGROUND 

For many dynamic systems t h e  r e l a t ionsh ip  between input  u ,  and 

output y 

l i n e a r  d i f f e r e n t i a l  equations of t h e  form3 

is  well described by a set  of f i r s t - o r d e r  cons tan t -coef f ic ien t  

I ~ = A ~ + B u  z = n x l , u = p X 1  

y = cz  y = m x l  

A p a r t i c u l a r  s e t  of equations t h a t  relates t h e  system input  t o  i t s  output 

with des i red  accuracy i s  ca l l ed  a r e a l i z a t i o n  f o r  t h e  system. A minimal 

r e a l i z a t i o n  i s  a r e a l i z a t i o n  of minimal order .  Kalman has shown t h a t  a 

minimal r e a l i z a t i o n  i s  both cont ro l lab le  and observable ( r e f .  35). This 

property w i l l  be used extensively i n  the  following discussion.  

The minimal r e a l i z a t i o n  depends on the  s p e c i f i c  input  t o  t h e  system 

as well as on the  s t r u c t u r e  of t h e  system. For  example, i f  t h e  system 

(eq. (3 .1 ) )  i s  exc i ted  by a Single  s i n e  wave, then the  minimal r ea l i za -  

t i o n  f o r  t h e  s teady-s ta te  response would be a f i r s t - o r d e r  system. In 

another example, c e r t a i n  modes of a system may not  be not iceably exci ted 

by a given input .  The minimal r e a l i z a t i o n  would include only those 

modes t h a t  were exci ted and observed. 
I 

Even i f  w e  res t r ic t  our a t t e n t i o n  t o  minimal r e a l i z a t i o n s ,  t he re  are 

many choices of parameters i n  the  matrices A, B,  and C t h a t  give the  
3When these  equations are used, y ( t )  does not  respond instantaneously 

t o  a s t e p  input i n  u ( t ) .  I t  is  sometimes convenient t o  approximate a 

physical  process by one t h a t  does respond instantaneously t o  a s t e p  

change i n  the  input .  For example, t h e  response of an accelerometer i s  

o f t en  so fast  t h a t  t h e  sensor dynamics are negl ig ib le .  The ideas  

presented here  can be extended t o  include these  s i t u a t i o n s .  
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same output f o r  a given input .  This is  e a s i l y  shown by introducing any 

nonsingular transformation of t h e  s ta te  vec tor ,  

x = Tz 

The input and output of t he  system can then be r e l a t e d  by t h e  equations 

(3  * 2) 

x = Fx + Gu 

y = k  

where 

F =  TAT-^ 
G = TB 

H = CT-l 

(3-3) 

The system (3.3) i s  s a i d  t o  be equivalent t o  (3.1). Note t h a t  t h e  

matrices F, G ,  and H contain n(n + m + p) parameters. Although t h e  

choice of F,  G,  and H t h a t  can be used i n  equations (3.3) t o  relate 

the  system input t o  t h e  system output i s  not unique, t he  t r a n s f e r  func- 

t i ons  between u(s)  and y(s )  a r e  unique (where u(s) and y ( s )  are the  

Laplace transforms of u ( t )  and y ( t ) ,  r e spec t ive ly ) .  If zero i n i t i a l  

conditions a r e  assumed, t he  t r a n s f e r  functions are given by 

y ( s )  = C [ I s  - A]-lBu(s) = H [ I s  - F]-’Gu(s) (3 5) 

There are mp indiv idua l  t r a n s f e r  functions i n  equation (3.5) which 

would seem t o  imply t h a t  t he re  might be as many as 

f i c i e n t s  and n denominator c o e f f i c i e n t s .  Although uniquely spec i f i ed  by 

the  input-output measurements, a l l  t hese  coe f f i c i en t s  are not independent. 

The computations f o r  t h e  t r a n s f e r  functions associated with d i f f e r e n t  

inputs a r e  i d e n t i c a l  except f o r  n parameters i n  t h e  column of t he  B 

matrix associated with the  d i f f e r e n t  inputs .  Consequently, t he  input 

and output can be r e l a t e d  by a maximum of 

nmp numerator coef- 

n(m + p) independent 
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parameters ( i . e . ,  n(m + 1) f o r  the first input and n addi t ional  

parameters f o r  each addi t iona l  input ) .  

parameters i n  F ,  G ,  and H, the  above argument suggests t h a t  n2 of 

these parameters might be spec i f ied  and the  remaining free parameters 

used t o  relate the  system input t o  the  output.  

presented i n  t h i s  chapter contains a m a x i m u m  of n(m + p) parameters a l l  

of which are uniquely defined by the  input-output behavior of t he  system. 

We w i l l  i l l u s t r a t e  these ideas f o r  a s ingle- input  single-output system 

p r i o r  t o  dereloping the  canonical form f o r  t he  general mult ivar iable  

sys  tem. 

Since there  are n(m + p + n) 

The canonical form 

Example 3 . 1  Single-Input,  Single-Output, Second-Order System 

Consider t he  s ingle- input ,  single-output,  second-order system given 

Y = [ h l l  

The Laplace transform of equation (3 .6)  i s  

where 

do = g11[-h11f22 + h12f21] + g21[-h12fll + hl l f121  

C l  = [-f11 - f22] 

co = [ f 2 2 f l l  - f l 2 f 2 J  
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Since y(s )  is completely spec i f ied  by u ( s )  and t h e  four  coe f f i c i en t s  

d l ,  do, c l ,  and coy it i s  clear t h a t  t he  e igh t  parameters i n  F,  G ,  and 

H are not  uniquely defined. I n  fac t ,  four  of t he  parameters i n  F ,  G ,  

and H can be determined i n  terms of t he  o the r  four .  

parameters we cons t ra in  the  s t r u c t u r e  of  F,  G ,  and H so  t h a t  t h e  four  

remaining parameters are uniquely defined by t h e  input  and output  rela- 

t ionships .  One way of  constraining the  s t r u c t u r e  of F ,  G ,  and H is  t o  

se t  h l l  = 1, h12 = 0, f 1 2  = 1, and f,, = 0. The four  remaining param- 

eters i n  F ,  G ,  and H are then uniquely def ined by the  r e l a t ionsh ips  

By choosing four  

dr = g,,, do = g,,, C l  = -f,,, co = -f,1 

This p a r t i c u l a r  choice of F, G ,  and H corresponds t o  a well-known 

canonical form f o r  s ingle-output  systems. Other canonical forms can be 

used t o  represent  t h i s  system but  equation ( 3 . 8 )  i s  p a r t i c u l a r l y  well 

su i t ed  t o  the  i d e n t i f i c a t i m  algorithm presented i n  t h i s  study. 

3 . 2  A CANONICAL FORM FOR MULTIOUTPUT SYSTEMS 

To t h e  au thor ' s  knowledge, none of t he  mul t ivar iab le  canonical forms 

cu r ren t ly  ava i l ab le  def ine  a s e t  of uniquely i d e n t i f i a b l e  parameters and 

a t  t he  same t i m e  are s u i t a b l e  f o r  use with the  i d e n t i f i c a t i o n  algorithm 

presented here.  A canonical form which meets both of these  cr i ter ia  i s  

presented i n  t h i s  sec t ion .  

by Luenberger f o r  multi- input systems. 

I t  is  analogous t o  a canonical form developed 

I n  order  t o  wri te  our canonical form f o r  the  unknown system it  is  

l i n e a r l y  independent rows of t h e  necessary t o  determine the  f i rs t  

observabi l i ty  matr ix  f o r  the  system. 

of equations of t he  form (3.1), t he  observabi l i ty  matrix f o r  t h e  system 

i s  given by the  matrix 

n 

If the  system i s  described by a s e t  

36 



% =  (3.9) 

If (3.1) is  a minimal r e a l i z a t i o n  having order  n,  then t h e r e  are n 

independent rows i n  ob. Since t h e  parameters i n  C and A are not  

known, however, it i s  not  always clear how t o  determine t h e  f i rs t  n 

l i n e a r l y  independent rows i n  t h i s  matrix.  

known, a l l  1 o s s i b i l i t i e s  should be  considered. This procedure introduces 

addi t iona l  uncer ta in ty  i n t o  t h e  i d e n t i f i c a t i o n ,  and the  combination of 

If t h i s  information i s  no t  

rows, which r e s u l t s  i n  a model giving t h e  "best  f i t "  of t he  da t a ,  

should be se l ec t ed  as the  estimate of t he  system. In  many appl ica t ions ,  

p a r t i c u l a r l y  i n  the  i d e n t i f i c a t i o n  of t h e  parameters i n  the  l i nea r i zed  

equations of motion f o r  an aircraft ,  t h e  l i n e a r  independence of t he  rows 

i n  the  matrix can be determined with a high degree of c e r t a i n t y  on 

the bas i s  of t h e  dynamics of the  problem without knowing t h e  ac tua l  

numerical values  of t h e  parameters. In  the  remainder of t h i s  r epor t  

w e  w i l l  assume t h a t  t h i s  information, which w i l l  be r e fe r r ed  t o  as t h e  

s t r u c t u r e  of t he  system, is known. 

If the  s t r u c t u r e  of t he  system i s  known, then the  canonical form f o r  

t he  system is  given by 

= FX + GU 

y = H x  
(3.10) 

where F and H are given i n  f i g u r e  1. There are no s impl i f i ca t ions  i n  

the  cont ro l  coe f f i c i en t  matrix G and therefore  t h i s  matrix has no t  

been writ ten out i n  d e t a i l .  The numbers p l ,  p2,  . . ., pm i n  
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Figure 1.- General canonical structure. 
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f igure  1 a re  equal t o  the  number of rows i n  the first n l i nea r  

independent rows of the  observabi l i ty  matrix (3.9),  t h a t  involve a 

mul t ip l ica t ion  by the  first,  second, . . ., and mth rows, respect ively,  

of the  matrix C. The symbol I i n  f igu re  1 is the  i d e n t i t y  matrix, 

the  blank areas a r e  a l l  zeros, and the  x ' s  i nd ica t e  nonzero elements. 

If the  unknown system is  modeled by equation (3.10) where F and H 

are given i n  f igu re  1, the  undefined parameters denoted by x are 

s t i l l  not uniquely i d e n t i f i a b l e .  

a t  the  end cf t h i s  sec t ion  t h a t  some addi t ional  parameters i n  f i g u r e  1 

can be s e t  equal t o  zero by the  re la t ionships  

I t  is  shown i n  asser t ions  3 . 1  and 3.2 

(3.11) 

if p p j ,  i # j then i 

= o  (3.12) h j  ,si 
- 

where f i , j  and h i , j  a r e  elements i n  F and H, respect ively,  and the  

subscr ip t  s i  is  defined 

If (3.11) and (3.12) are used t o  s e t  the  corresponding parameters i n  

f igure  1, equal t o  zero, then a maximum of n(m + p) parameters remain 

and can be uniquely i d e n t i f i e d  from the  measured data .  These ideas are 

i l l u s t r a t e d  i n  the following example. 
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Example 3 . 2  A Fourth-Order System With Two Ouputs 

Consider a system, (3.1),  where A i s  a 4 x 4 matrix and C i s  a 

2 x 4 matrix. The obse rvab i l i t y  matrix i s  

% =  

is  t h e  i t h  row of C .  Let t h e  system be observable but  c(i) where 

assume t h a t  t h e  fou r th  row of 

C(2)’ and C(l)A. 

observabi l i ty  matrix a r e  then 

c ( l )  ’ s, c ( ~ ) A ,  i s  l i n e a r l y  dependent on 

The first four  l i n e a r l y  independent rows of the  

(3.14) 

which implies t h a t  p, = 3 and p2 = 1. Since p2 < p1 - k f o r  k r: 0 ,  

1, (3.11) implies t h a t  f = f = 0 .  Expression (3.12) gives no 
1 9 4  2 9 4  

addi t iona l  information about t he  parameters i n  H. The canonical form 

f o r  the  system i s  the re fo re  given by t h e  equations 

I = Fx + Gu 

y = Hx 

where 
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F =  

f l l  1 0 0 

f 2 1  0 1 0 

f31  0 f 3  

f 4 1  f 4  

G =  
H = [  1 0 0  

h21 0 0 

In  many appl ica t ions  ( a l l  t h a t  w e  have considered), it is  poss ib le  

t o  order t h e  measurements, y, so t h a t  t h e  first n rows of a r e  

l i n e a r l y  independent. 

d e t a i l  because of i t s  frequency of a p p l i c a b i l i t y .  If r and q are 

defined as t h e  remainder and quot ien t  of n/m, respec t ive ly ,  then 

The canonical form f o r  t h i s  case is  examined i n  

p i = q + 1  f o r  i G r ,  pi = q f o r  i > r, and t h e  canonical form f o r  

F and H i s  given i n  f i g u r e  2. A s  i n  f i g u r e  1, the  F matrix has been 

pa r t i t i oned  i n t o  m2 submatrices and H has been pa r t i t i oned  i n t o  m 

submatrices. Expression (3.11) implies t h a t  t h e  parameter i n  the  upper 

l e f t  corner of each submatrix i n  F having t h e  dimension q + 1 x q i s  

equal t o  zero and (3.12) implies t h a t  t h e  H matrix i s  reduced t o  a l l  

1's and 0 's  except f o r  t h e  last  m - r parameters i n  the  f irst  column 

of each submatrix having the  dimension m x q + 1. 

If t h e  s ta te  vec tor  is  an even mul t ip le  of t he  measurements and if  

the  f i rs t  

t h e  parameters i n  the  observation matrix H reduce t o  a l l  zeros and 

n rows of t h e  obse rvab i l i t y  matrix a r e  l i n e a r l y  independent, 

ones. 

Example 3.3 A Fourth-Order System With Two Outputs 

Consider t h e  system used i n  example 3 . 2 ,  except t h a t  t h e  f i rs t  n 

rows of t he  observabi l i ty  matrix, ob, 
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Figure 2 . -  Special  case canonical s t ruc tu re .  
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(3.16) 

are 1inearly.independent. Then q = 2, r = 0, and the input and output 

can be related by a realization having the form * 

F =  

Y 

fll f13 0 

f21 0 f23 0 

f31 0 f33 

f 4 1  f43 

The transformation that 1 

constructed as follows : Arrai 

of the observability matrix (: 

P =  

G =  
H=[ 1 

0 

0 0 0  

0 1 0 

(3.17) 

ts a system into its canonical form i 

e the first n linearly independent 

9) to form a nonsingular matrix P, 

.S 

rows 

(3.18) 

where pi 

involving a multiplication by the ith row of C. Define q ( j )  as the 

is the number of rows in this linearly independent set 
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j t h  column of P - l  !! - Q. The inverse of t h e  canonical transformation 

matrix can then be constructed,  

(3.19) 

where Z i  is  defined by 

The remainder of t h i s  s ec t ion  i l l u s t r a t e s  t h a t  t he  a s se r t ions  

concerning the  s t r u c t u r e  of t he  canonical form are co r rec t .  

Assertion 3.1 If a system i s  transformed according t o  expres- 

s ions  (3.2) t o  (3.4) where 

then H w i l l  have the  form given i n  f i g u r e  1 and i f  p i <  p j  then 

T-' i s  constructed as i n  equation (3.19),  

h .  - - "j. 
3 > S i  

Proof: The canonical form f o r  the  observation matr ix  i s  computed 

1 by means of t he  equation H = CT- o r  

(3.20) 

If the  j t h  row of  t he  matrix C i s  denoted by the  elements i n  

H are computed by t h e  matrix products 

(3.21) 

where 

vec tor  c Ak is  orthogonal t o  q by t h e  way t h e  q ('i) were. 

chosen. This i s  i l l u s t r a t e d  by t h e  following argument. The vector  

c(j)Ak i s  contained i n  the  s e t  of vectors  denoted by t h e  rows of t h e  

k G pi - 1. If k < p i  - 1 or  (k = p i  - 1 and j < i )  then t h e  

( j  1 

matrix 
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(3.22) 

APi-l is  l i n e a r l y  independent of these  rows and 

Ak can be  expressed 

( i )  Since the  vec tor  

i s  the  Z i  row of t h e  matrix P,  t he  vec tor  

as a l i n e a r  sum of the  rows of P, excluding the  Z i  row, 
'(j) 

(3.23) 

Taking the  inne r  product of both s ides  of t h i s  equation with q (z i )  w e  

obtain 

n -  

Akq(zi) = ~ a s p ( s ) q  as6,, z i  = o  (3.24) 

s= 1 s= 1 

because s # Z i .  If these  elements are s e t  equal t o  zero, H reduces 

the  form given i n  f i g u r e  1. If pi G p j  then c l j )A ~ * - 1  1 q ( z i )  - - 6 i j  

t h e  way t h e  q (zi) were chosen. This implies t h a t  h - 
j , Zi-pi+l - " i , j  

But Z i  - p .  1 + 1 = s i  which implies t h a t  hj ,s i  = " , j .  

Assertion 3.2.2 If a system i s  tranformed according t o  

t o  

by 

-1 equations ( 3 . 2 )  t o  (3.4) where T is  constructed as shown i n  (3.19),  

then F w i l l  have t h e  form given i n  f i g u r e  1 and i f  pi < p j  - k then 

fs.+k,si = 0 f o r  k = 0, 1, . . Pj  - p i  - 1. 3 

Proof: The canonical form f o r  t he  s ta te  coe f f i c i en t  matrix is 

computed by t h e  equation 
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F =  TAT-^ (3.25) 

I t  i s  convenient t o  consider A as a l i n e a r  transformation, 0 ,  from a 

vector space U i n t o  i tself  with respec t  t o  some bas i s ,  e l ,  e2, . . ., 
en. The elements i n  the  i t h  column of A are the  components of t h e  

transformed i t h  b a s i s  vector.  If a new b a s i s ,  e l ,  e2, . . ., e’ i s  

generated whose components are given i n  terms of t h e  o r i g i n a l  b a s i s  by 

t h e  columns of 

t h e  transformation i t se l f ,  

l t  

n’ 

T - l ,  t he  new b a s i s  vec tors  are r e l a t e d  t o  each o ther  by 

(3.26) 

Because the  columns of t he  matrix contain t h e  components of t he  

transformed bas i s  vec tor ,  t h e  matrix F takes t h e  form given i n  

f igu re  1. The columns, excluding t h e  s i  columns, contain a l l  zeros 

except f o r  a one on the  superdiagonal. 

Let us now consider t he  s i  columns of t he  s t a t e  c o e f f i c i e n t  - 
matrix. 

t he  components of t he  transformed b a s i s  vec tor ,  w e  can w r i t e  

Again, using the  f a c t  t h a t  t h e  columns of t he  matrix contain 

(3.27) 

In  terms of t he  o r i g i n a l  b a s i s ,  t h i s  implies t h a t  

Ad, a number, p - d ,  where 
j 

Associate with each row vec tor ,  

j = 1, 2, . . ., m and d = 0,  1, 2 ,  . . .. If the re  i s  a j so t h a t  

- d > pi, take the  inner  products of both s i d e s  of equation (3.28) 
p j  
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with t h e  row vec tors ,  c(k)Ab, which maximize pk - b ( i . e . ,  b = 0 and 

k is such t h a t  pk = max(pt: = 1, . . ., m)). 

Note t h a t  because of t he  way t h e  q were chosen and because pk > p i ,  

In addi t ion ,  no te  t h a t  

because of the  way t h e  

reduces t o  

p j  - 1 - d cannot be g r e a t e r  than pk - 1 

were chosen. Equation (3.29) therefore  0) 

This r e s u l t  can be s t a t e d  as follows: 

Result 3.2.1: If 

!! max{pj - d3 
j=1,2, ..., m ’max - 

d=o , l ,  ... 
and i f  

then 

f s j + d , s i  = 0 f o r  a l l  j and d such t h a t  p j  - d > B > pi 

f o r  some .6 where B is  a r e a l  number ( i f  Bm, - 1 > p i  then 
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- 1 is  such a number). Take the inner  products of = ’max 

equation (3.28) with a l l  row vec tors  of  t h e  form C (k) Ab where 

pk - b = 6,  
m P j -1  

(3.32) p -1 -d+b 
Api+bq(Zi) = 2 2 fSj+dA J ,Czj> 

(k) 
j = 1  d=o 

Note t h a t  because of the  way t h e  q (‘j) were chosen and because 

(3.33) 

The only remaining terms i n  equation (3.32) are those f o r  which 

p j  - 1 - d + b > pk - 1. However, i f  p - 1 - d + b > pk - 1 then j 

- 1 - d > pk - b - 1 = R - 1 which implies t h a t  p - d > B which 

implies by hypothesis t h a t  t he  coe f f i c i en t s  of these  terms equal zero. 

Equation (3 .32)  therefore  reduces t o  

’j - j 

(3.34) 

and we e s t a b l i s h  the  following r e s u l t :  

Result  3.2.2 If fs.+d,s = 0 f o r  a l l  j and d such t h a t  I i 

- d > 6 > pi f o r  some 6 ,  then fs.+d,si  = 0 f o r  a l l  j and d such 
P j J 
t h a t  

t i o n  the  o r ig ina l  a s se r t ion  t h a t  

p j  - d = 6 > pi. Results 1 and 2 can be used t o  deduce by induc- 

fs.+d,si  = 0 f o r  d = 0,  1, . . ., 
J 

p j  - p i  - 1. 

3.3 IDENTIFIABILITY OF THE PARAMETERS I N  THE CANONICAL FORM 

If the  minimal r e a l i z a t i o n  of a l i n e a r  system i s  descr ibed by a s e t  

of equations of t he  form given i n  equations (3.10) through (3.13) and 
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f igu re  1, then the  undefined parameters i n  those equations are uniquely 

determined by measurements of t h e  input  and output .  This a s se r t ion  i s  

proven i n  two p a r t s :  F i r s t ,  it is  shown t h a t  t he  canonical r e a l i z a t i o n  

f o r  a system is unique ( i . e . ,  t he  canonical r e a l i z a t i o n s  of any two 

equivalent  minimal r e a l i z a t i o n s  are i d e n t i c a l ) .  Second, it is shown 

t h a t  equations (3.10) through (3.13) and f i g u r e  1 are i n  t h e  canonical 

form s ince  the  canonical transformation f o r  these  equations i s  t h e  

i d e n t i t y  . 
3.3 .1  Uniqueness of t he  Canonical Real izat ion 

Consider two equivalent bu t  d i f f e r e n t  minimal r e a l i z a t i o n s  of a 

l i n e a r  system 

(3.35) 

(3.36) 

I t  is shown i n  re ference  27 t h a t  under these conditions t h e  s ta tes  of 

t he  two systems are r e l a t e d  by a nonsingular transformation 

z2 = uzl  (3.37) 

If t he  r e l a t i o n s  f o r  equivalent systems presented i n  equations (3.2) 

through ( 3 . 4 )  a r e  used, it i s  easy t o  see t h a t  t he  canonical transforma- 

t i ons  f o r  these  two r e a l i z a t i o n s  are r e l a t ed  by 

T i 1  = UT;' (3.38) 

where the  subscr ip ts  1 and 2 are used t o  d i s t ingu i sh  between t h e  

canonical transformation of system 1 and system 2 ,  respec t ive ly .  The 

canonical r e a l i z a t i o n  of system 2 i s  r e l a t ed  t o  t h e  canonical 

r e a l i z a t i o n  of system 1 by 
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and hence they are equal. 

3 . 3 . 2  The Canonical Transformation f o r  Equations (3.10) Through (3.13) 

is  t h e  Iden t i ty  

I t  i s  shown i n  a s se r t ion  3 . 3 . 1  a t  t he  end of t h i s  sec t ion  t h a t  t h e  

columns p w,  p(z2) Y * * > p  (zm) of the P matrix contain a l l  

zeros except f o r  a one on the  main diagonal. This implies t h a t  the  

columns q ( Z l ) ,  q(z2) > . . . , q  (zm) of the  Q matrix ( the  inverse of 

P) a l s o  contain a l l  zeros except f o r  a one on the  main diagonal. 

then easy t o  see t h a t  t he  r e su l t i ng  canonical transformation T-l 

i d e n t i t y .  

columns, p (zi) ,  are of the  asser ted  form. 

t h i s  asser t ion ,  we w i l l  first prove r e s u l t s  3 . 3 . 1  through 3 . 3 . 5 .  

I t  is  

is  t h e  

The d i f f i c u l t  p a r t  of t h i s  der iva t ion  is  t o  show t h a t  t h e  

To f a c i l i t a t e  t h e  proof of 

Definit ion: The element i n  the  i t h  row and j t h  column of t h e  

matrix Fk w i l l  be 

Result 3 . 3 . 1 :  

Proof: If p j  

are given by 

denoted by fk  
.i, j ' 

Gi,Zj-k and if If 1 k -  - 

- f i , s j *  

2 2 then t h e  parameters i n  the  column of F 

k G p - 1 then f .  
j 1 J j  

- 

f i , z j  - - " i , z j - i  (see f i g .  1) 

This implies t h a t  t h e  parameters i n  the Z j  column of F2 are the  

parameters i n  the  (Zj - 1) column of F, 

2 -  f i , t j  - f i , t j - 2 + 1  
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which imp lies 

fk  - - 'i,Z.-k 
i , Z j  J 

P j  - - f i , Z - - p - + i  - - f i , s j  f i , t j  J J  

P j+e  = 0 f o r  
Result  3.3.2: If k = p j  p i  - 1 then fsi+d,lj 

- 1 - e where e = 0.  d = 0, 1, . . ., p i  - Pj  

P j  - 
j 

- f i , s  Proof: If k = p j  < p i  - 1 then by r e s u l t  3 .3 .1  f i ,z j  

= 0 f o r  d = 0, PO f J s i+d ,  Z j  which implies by a s se r t ion  3.2.2 t h a t  

- 1. This can be r e s t a t ed  as fPj+e = 0 f o r  
si+d, Z j 

1, * - 9  P i  - p j  

d = 0,  1, . . ., p i  - p j  - 1 - e where e ' =  0.  

Result 3.3.3: If fPj+e = 0 f o r  d = 0,  1, . . ., pi - p j  - 1 - e  

and i f  0 G q G pi - p j  - 1 - (e + l ) ,  then fPj+e+i = 0 f o r  q = 0 ,  

s i+d ,  Z j  

Si+q, z j  

'j 
1, 2 ,  . . ., p i  - 

Proof: 

J p= 1 

- 1 - (e + 1). 

m 
p . + e  - P j + e  - + fs;+q+l,zj 

9,P p , z j  
p= 1 - 

(see f i g .  1) 

We w i l l  now show t h a t  each term on the r i g h t  is zero. Let us first 

consider t h e  first term. Ei ther  p i  - q# > pp o r  pi - q G pp. If 

p i  - q > pp If p i  - q < p p  

pp - p j  - 1 - e  - l > O *  
J 

then pi - (p i  - p j  - 1 - (e  .t 1) )  Qpp* 

then fsi+q,sp = 0 by asser t ion  3 .2 .2 .  

- p .  - 1 - e>O 
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fP j +e 

P 
which implies +d,Zj = 0 by hypothesis.  The f i rs t  term on the  r i g h t  

of the  equation i s  therefore  equal t o  zero. The second term i s  equal t o  

zero because 

OGqGpi - p j  - 1 - ( e  + 1) *OGq + l G p i  - p j  - 1 - e+pj+' = o  s P +q+1,zj 

by hypothesis.  

Result  3.3.4: If 0 G d G ( p i  - p j  - 1 - e) then 

= o  fP j +e 
S .  +d, Zj 
1 

Proof: I t  was shown i n  r e s u l t  3.3.2 t h a t  t h i s  is  t r u e  f o r  e = 0.  

- 1 - e > 0 f o r  e = 1, r e s u l t  3.3.3 can be used t o  
P j Then i f  p i  - 

show t h a t  t h i s  r e s u l t  i s  t r u e  f o r  e = 1. We can therefore  proceed by 

in t roduct ion  t o  e s t a b l i s h  the  above r e s u l t .  

Result  3.3.5:  If 1 

except f P j - l  which equals 1. 

k G max[pi - 1, p j  - 11 then f k  = o  
~ S i , z j  

s j  Y Z j  

Proof: E i the r  p i  G p j  o r  pi > p j .  If pi G p j y  then 

- 11 * 1 G k G p - 1 which implies by 1 G k G max[pi - 1, p j  

r e s u l t  3.3.1 f i , ,  

k -  k 

j 

= 6 i , t j - k  except i f  k = p then j 
j 

= 0 except fp j  = 1 and t h e  argument is 
j y  j f i , z j  - f i , s j  * f S i , Z j  S 

completed. G k G p i  - 1. 

If 1 G k G p - 1 then t h e  above reasoning completes the  argument. If 

If p i  > p j  then e i t h e r  1 G k G p - 1 o r  p j j 

j 
G k G p  i - 1  then 0 G k - p j G ~ i - p ~  - 1 which implies 

P j 

0 G p i  - p j  - 1 - (k - p j ) .  If (k - p j )  is  denoted by e then 

= 0 by r e s u l t  3.3.4 and t h e  argument is  completed. fPj+Ck-pj) = f k 
Si+d,  Z j  si+d, Zj 

Assertion 3.3.1 The parameters i n  the  Z j  column of t h e  matrix P 

are given by 

52 



(3.40) - 
P i , Z j  - 6 i , z j  

Proof: The parameters i n  the  Zj column of P are computed by 

where 

k G p i  - 1 

pd has t o  be less than p i ,  equal t o  pi, o r  g r e a t e r  than pi. 

Pd < P i ,  then h i , s d  = 0 by a s s e r t i o n  3.2.1. If Pd = pi then 

(3.41) 

(3.42) 

If 

= bid by a s s e r t i o n  3 . 2 . 1  and Pd - 1 k by (3.42) which implies h i ,  Sd 

which equals 1. If fP j -1 by r e s u l t  3.3.1 t h a t  fk  = 0 except 
s d , z j  s j  'Zj 

Pd > P i  then pd - 1 > k by (3.42) which implies by r e s u l t  3.3.1 t h a t  

f k  = 0.  If these  r e s u l t s  are used i n  (3.41), w e  obtain 
sd , z j  

= fk = 0 except f o r  i = j and k = p - 1 Psi+k,  2 S i , z j  - j 

i n  which case 

= 1  - 
PSj+(pj- l )  , z j  - "zj,Zj 

This, therefore ,  implies t h a t  

= 6  P i ,  z j  i , Z j  

and t h i s  completes t h e  argument. 
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I V  A NEW COMBINED ALGORITHM FOR ESTIMATING SYSTEM 

PARAMETERS FROM INPUT-OUTPUT DATA 

4.1 STATEMENT OF THE PROBLEM 

As s t a t e d  i n  Chapter I ,  t he  problem is t o  minimize the  function4 

with respect  t o  the  unknown parameters i n  

cons t ra in t  equations 

F, G,  H and xo of the  

2 = F? + Gu 

7 = HS 

;(O) = xo 

where y ( t )  is  the  measured system response and u ( t )  i s  t h e  measured 

input .  The main d i f f i c u l t y  is  t h a t  t h e  model response 7 i s  a non- 

l i n e a r  function of the.unknown parameters i n  F and H. However, i f  t h e  

measurement errors (portions of measurements which are not cor re la ted  

with u) a r e  negl igibly small, t h i s  problem can be formulated as a 
~ 

l i nea r  problem. 

estimate of the  unknown parameters and t h i s  estimate can be used t o  

The l i nea r  formulation can be used t o  bbtain an i n i t i a l  

i n i t i a t e  the  i t e r a t i v e  so lu t ion  t o  the  nonlinear problem. The l i nea r  

formulation corresponds t o  an equations of motion method and the  non- 

l i n e a r  problem corresponds t o  a response curve f i t t i n g  method. 

4.2 THE EQUATIONS OF MOTION METHOD 

For a pe r fec t  model and i n  the  absense of noise ,  t he  output of 

(4.2) w i l l  equal t he  measurements exactly;  therefore ,  t h e  difference,  

41n the  case of d i s c r e t e  measurements, t h e  problem i s  t o  minimize 
N 

i= o 
J = (Y(ti) - y(ti))W(y(ti)  - ? ( t i ) )  where 

ti. 

y ( t i )  is  t h e  measurement 
\ 

of the  system response a t  d i s c r e t e  times 
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y ( t )  - f ( t ) ,  equals zero. 

fed back t o  t h e  model through a r b i t r a r y  gains 

the  model response f .  

Under these conditions t h i s  d i f fe rence  can be 

K and L without changing 

The equations f o r  t he  model with t h i s  e r r o r  

feedback a r e  

which when terms are combined can be r e w r i t t e n  

(4 .4)  
2 = (F - KH)? + Gu + Ky G(0) = xo 

y = ( I  - L ) e  + Ly 

The l a t t e r  set  o f  equations is  i l l u s t r a t e d  i n  block diagram form i n  

f igure  3 .  

The expressions f o r  2 i n  equations (4 .3)  and (4 .4)  are i d e n t i c a l  

t o  the  s t a t e  observer equation f o r  de te rminis t ic  systems as s tudied by 

Luenberger ( r e f s .  36, 37) .  Because the  choice of K and L i s  a rb i t r a ry ,  

the  parameters of F - KH and (1 - L)H can be chosen independently of 

the  unknown parameters i n  the  system provided the  s t r u c t u r e  of the  system 

is  known (i .e. ,  t he  measurements can be arranged so t h a t  t he  values of 

p i  

by wri t ing the  equations i n  the  canonical form developed i n  Ghapter 111. 

If the  choices f o r  F - KH and (I - L)H a re  defined as 

respect ively,  and i f  these de f in i t i ons  a re  used i n  equations ( 4 . 4 ) ,  f 

can be wr i t t en  

discussed i n  Chapter I11 a re  known). This can e a s i l y  be demonstrated 

FN and HN, 

I 2 = FN2 + Gu + Ky 

f = H N ~  + LY 

;(O) = xo 

The advantage of using t h i s  formulation t o  model the  unknown system i s  

t h a t  s ince  

contained i n  t h e  matrices K ,  L, G ,  and xo. These parameters a r e  

FN and HN can be chosen, t h e  unknown parameters are 
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Figure 3 . -  Model with error feedback. 
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coe f f i c i en t s  of known forcing functions and therefore  a f f e c t  t he  model 

response, y ,  l i nea r ly .  

a re  constraining the  allowable s t ruc tu re  of t h e  iden t i f i ed  system t o  be 

r e l a t ed  t o  our choice of FN and HN by 

By formulating the  problem i n  t h i s  manner we 

F N = F - K H  

HN = (I  - L)H 

where 
XNO 

I t  i s  convenient t o  def ine 6G = G - GN and 6xo = xo - 
GN and XN can be in te rpre ted  as i n i t i a l  estimates of G and xo and 

can i n c l d e  any known parameters. 

t i ons  (4.5), w e  obtain 

0 

Using these de f in i t i ons  i n  equa- 

2 = FN2 + GNU + 6Gu + Ky 

f = HN? '+ ~y 

2o = XN, + 6x0 

By l i n e a r  superposit ion,  can be expressed 

? ( t >  = YN(t) + A(t) ST 

where YN(t) i s  the  response - of the equations 

6y 

and A(t) i s  the  gradient  matrix of yN with respect  t o  these parameters. 

When (4.6) is subs t i tu ted  i n t o  (4.1) ,  J becomes quadrat ic  i n  the  unknown 

i s  a vector containing the  unknown parameters i n  K ,  6G,  L ,  and bx,; 

parameters. The estimate of 6y can be obtained as discussed i n  

Chapter I1 and is  given by 

14.8) 

When the  measurements a r e  d i s c r e t e  t h e  estimate of 6y is  given by 
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The indiv idua l  components of 

so lu t ion  of t he  d i f f e r e n t i a l  equations 

A(t) can be computed by t h e  numerical 

where the  p a r t i a l  de r iva t ives  of 

parameter 6 y i  

parameters 6yi. 

equations i n  Chapter V. 

K ,  6 G ,  L, and 6xo with respec t  t o  the  

are zero except f o r  a one i n  t h e  loca t ion  of t h e  s p e c i f i c  

More w i l l  be s a i d  about t h e  computation of these  
I 

The estimates f o r  F ,  G ,  H, and xo are determined from t h e  esti- 

mates of K, 6 G ,  L, and xo ~ by t h e  r e l a t ionsh ips  

In  t h i s  way, t h e  i d e n t i f i c a t i o n  problem has been reduced t o  a sequence 

of operations involving t h e  numerical so lu t ions  of (4.7), (4.8), (4.9), 

and (4.10). No i t e r a t i o n  is  required.  
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Example 4.1 Iden t i f i ca t ion  of a Fourth-Order System With Two 

Outputs 

Consider t he  system used i n  example 3 .2 .  If t h e  matrices 

F 4 1  k42_J 

a r e  used i n  (4.4), t h i s  system can be modeled by 

€11 -k11 1 0  0 

€2 1 -k 2 1 0 1  0 
u +  

k l 1  

k21 

k31 

k 4 l  

K and L, 

(4.11) 

0 

0 

k32 

k42 

Y 

y i ( 0 )  = xo 
0 ~ 

(4.12) 

Clearly,  t he  parameters i n  F - and (I - L)H can be chosen indepen- 

dent ly  of t he  numerical values of the  parameters i n  

parameters i n  can be 

chosen a r b i t r a r i l y  f o r  use i n  equations (4.7) and the  unknown parameters 

i n  the  vector  y would be k i i ,  k21, k31, k41, k32, k42, 221, g i i ,  8212 

831, 841, x,(O), x2(0),  x3(O),. and x4(O). 

H, and xo can be obtained by using (4.7) through (4.10). 

F and H. If a l l  t he  

F ,  G ,  H, and xo are t o  be iden t i f i ed ,  GN and x 
NO 

An i d e n t i f i c a t i o n  of F, G,  
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The above i d e n t i f i c a t i o n  procedure has been r e fe r r ed  t o  as an 

equations of motion method. 

t i a l  func t ion  

transform of t h e  assumed equations of motion (see sec t ion  2.1).  The 

analogy between the  i n t e g r a l  transform approach and the  concept of a 

l i n e a r  observer i s  discussed i n  appendix B. 

This ca tegor iza t ion  is  clear i f  the  exponen- 

e FN(t-T) i s  used as the  method function i n  t h e  i n t e g r a l  

I n  the  previous discussion the  noise  was assumed t o  be neg l ig ib l e  

i n  the  unknown system. I n  the  presence of  noise,  t h e  output of (4.5) 

w i l l  not equal t he  measurements even f o r  a pe r fec t  model. If t he  proce- 

dure described above i s  applied t o  a system with noise, t h e  estimates of 

the  parameters w i l l  be biased. 

discussed i n  sec t ion  2 . 1 . 2  f o r  t h e  equations of motion method. 

case of d i s c r e t e  measurements, t he  b i a s  is given by equation (2.16), 

which i s  r ewr i t t en  here  f o r  convenience. 

The source of the  b i a s  is  similar t o  t h a t  

I n  the  

N 

i= 1 

The terms A t ( t i )  and 6; have been used i n  p lace  of A t i  and f, 

respec t ive ly ,  f o r  relevance t o  t h e  present  discussion. The term A t ( t i )  

is t h e  grad ien t  of 7 with respec t  t o  the  parameters i n  6y i f  the re  

were no noise  i n  t h e  system; A,(ti) i s  the  d i f f e rence  between the  gradi-  

en t  of 7 and A t ( t i ) .  

ments which is  not  co r re l a t ed  with the  input 

conditions xo. I t  can be seen from equation (4.13) t h a t  t h e  s i z e  of t he  

b i a s  i s  equal t o  a constant p lus  a term proportional t o  t h e  s i ze  of t h e  

estimate,  6;. If the  i n i t i a l  choices of FN and HN a r e  such t h a t  t h e  

F ina l ly ,  y , ( t i )  is  t h a t  po r t ion  of t he  measure- 

u or  the  i n i t i a l  
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estimates of K and L are extremely la rge ,  then the  b i a s  e r r o r  can 

o f t en  be  reduced by choosing a new 

f o r  F and H and repeat ing the  process.  If t h i s  procedure i s  repeated 

u n t i l  t he  estimates, go t o  zero, t h e  second term i n  equation (4.13) w i l l  

vanish. However, t h e  constant b i a s  term usua l ly  cannot be eliminated by 

t h i s  process ,  as i s  i l l u s t r a t e d  i n  Chapter V I .  

4 .3  THE RESPONSE CURVE FITTING METHOD 

FN and HN equal t o  t h e  est imates  

The main reason f o r  using a measurement e r r o r  procedure i s  t h a t  

unbiased noise  i n  t h e  system does not  cause a b i a s  i n  the  parameter 

estimates (see Chapter 11). One algorithm t h a t  can be used t o  minimize 

(4.1) sub jec t  t o  (4.2) is t h e  method of quasi-Zinearization. The bas i c  

idea behind quas i - l inear iza t ion  has already been discussed i n  Chapter 11. 

If t h e  i n i t i a l  estimates of  F ,  G ,  H,  and xo are defined as FN, GN, HN, 

and XN respec t ive ly ,  then 2 and can be approximated by 
0' 

where 

and where 

If these  equations are added together  we obta in  

(4.14) 
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If t h e  system i s  modeled i n  t h e  canonical form discussed i n  Chapter 111, 

then  t h e  unknown parameters i n  

matrices K and L by t h e  r e l a t ionsh ips  

61: and 6H calz he  expressed i n  

where the  approximations are based on 6F and 6H being small. 

equation (4.15) 

A 

x =  
A 

Y =  

is  s u b s t i t u t e d  i n t o  [4.14), we obtain. 

terms of 

(4.15) 

If 

(4.16) 

Equations (4.16) a r e  i d e n t i c a l  t o  (4.6) except t h a t  yN has replaced y. 

Parameter estimates can be obtained by t h e  numerical so lu t ion  of equa- 

t i o n s  (4.7) through (4.10) with t h e  exception t h a t  

of y i n  (4.9). New estimates of t h e  unknown parameters are obtained 

by t h e  so lu t ion  of (4 .10 ) . -  If they d i f f e r  s i g n i f i c a n t l y  from the  i n i t i a l  

estimates,  the  procedure i s  repeated. I n  t h i s  way an i t e r a t i v e  procedure 

i s  es tab l i shed  f o r  determining the  unknown parameters, y ,  t h a t  minimize 

yN is  used i n  p lace  

(4.1). 

4.4 THE COMBINED ALGORITHM 

The idea  f o r  a combined algorithm is  now evident.  The s t r u c t u r e s  of  

t he  equation e r r o r  and measurement e r r o r  problems a r e  i d e n t i c a l  except fo r  

the  computation of t he  components of 

whether measured o r  estimated da ta  are used i n  the  s e n s i t i v i t y  equa- 

t i ons  (4.9).  If measured da ta  are used, t h e  procedure provides an esti-  

mate of F, G ,  H, and xo i n  a s i n g l e  sequence of operations e s s e n t i a l l y  

independent of t h e  i n i t i a l  choice of 

absence of no ise ,  t h i s  estimate i s  t h e  same as t h e  quas i - l i nea r i za t ion  

A(t) .  The only d i f f e rence  here  is 

FN, GN, HN, and XN . I n  the  
0 
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estimate; bu t  if the re  i s  noise  i n  t h e  system, t h i s  estimate w i l l  be 

biased. Choosing a new FN, GN, HN, and x equal t o  the  estimates of  

F, G,  H, and xo and repeating t h e  equations of motion method usua l ly  

reduces t h e  b i a s  e r r o r  i n  t h e  estimates. However, t h e  b i a s  cannot be 

eliminated completely by repeated appl ica t ion  of t h i s  process. 

achieving the  b e s t  estimate by t h e  equations of motion method, t h e  com- 

bined algorithm replaces y by yN i n  the  s e n s i t i v i t y  equations (4.9). 

NO 

On 

This implements t h e  response curve f i t t i n g  method which genera l ly  con- 

verges t o  the unbiased estimate very rap id ly .  

This procedure is  i l l u s t r a t e d  i n  f i g u r e  4. When the  switch i n  t h e  

upper center  of t h e  diagram i s  i n  t h e  (+) pos i t i on ,  we are using the  

equations of motion method and when it  is  i n  t h e  (-) pos i t i on ,  w e  a r e  

using t h e  response curve f i t t i n g  method. For t h e  i n i t i a l  set  of i t e r a -  

t i ons ,  t he  switch i s  i n  the  (+) pos i t i on .  After t h a t ,  it is i n  t h e  (-) 

pos i t i on .  

The components of 

s e n s i t i v i t y  equations (4.9) which are labeled i n  the  f igu re .  

of t h e  s e n s i t i v i t y  equations are used t o  form t h e  products 

and f(t)TW(y - y,) which are in tegra ted  simultaneously i n  order t o  reduce 

s torage  requirements. The diagram i s  for  continuous measurements. I n  

t h e  case of d i s c r e t e  measurements, t he  in t eg ra t ions  over t h e  i n t e r v a l  

(0, t )  on the  r i g h t  hand s i d e  of t h e  f igu re  would be replaced by 

summations. The estimate 6; i s  obtained by t h e  so lu t ion  of (4.8) a t  

t he  f i n a l  t i m e  tf,  and t h e  unknown parameters are computed using (4.10). 

The process is  rhen repeated as indicated where t h e  supe r sc r ip t  (1) 

ind ica t e s  t h e  new estimate and t h e  superscr ip t  (0) represents  t h e  

previous estimate. 

The rest of t h e  computational s t r u c t u r e  remains unchanged. 

A(t) are computed by t h e  numerical so lu t ion  of t he  

The outputs 

A(t)TWA(t) 

6 3  
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I n  order t o  apply t h e  combined algorithm, it is  necessary t h a t  t he  

equations be wr i t t en  so t h a t  t he  unknown parameters can be a f f ec t ed  

independently by t h e  parameters i n  the  matrix products KH and LH.5 

has been shown t h a t  t h i s  is always poss ib le  by going t o  t h e  canonical 

form discussed i n  Chapter 111. 

unknown parameters than were i n  t h e  o r ig ina l  equations, t h e  transformed 

equations a r e  preferab le .  

p r i a t e  form t o  apply t h e  combined algorithm r e s u l t s  i n  more unknown 

parameters6 than i n  t h e  o r i g i n a l  equations, it is  c l e a r l y  b e t t e r  t o  s t a y  

with the  o r i g i n a l  equations. On the  first few i t e r a t i o n s  those sens i -  

t i v i t y  equations t h a t  can be dr iven  with the  measured states a r e  so 

driven, and t h e  remaining s e n s i t i v i t y  equations are driven with the  

estimated s t a t e s .  

I t  

If the  transformation r e s u l t s  i n  fewer 

However, i f  wr i t ing  t h e  equations i n  an appro- 

5See equations ( 4 . 3 ) ,  (4 .4) ,  and (4.5) .  

Constraints r e l a t i n g  these  addi t iona l  parameters are ava i l ab le ,  but 

a r e  genera l ly  d i f f i c u l t  t o  t a k e  i n t o  account. 
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V A SIMPLIFICATION IN THE COMPUTATION OF THE SENSITIVITY 

FUNCTIONS AND INTEGRALS OF THE SQUARED 

SENSITIVITY FUNCTIONS 

5.1 COMPUTATION OF THE SENSITIVITY FUNCTIONS 

5.1.1 Statement of Problem 

The problem can be s t a t e d  as follows. Given a system described by 

the  equations 

= Fx + Gu x(0) = xo (5.11 

where x is  an n-dimensional s t a t e  vector  and u is  a p-dimensional 

input  vector ,  and assuming t h a t  t he  system i s  c ~ c l i c , ~  f i n d  the  first- 

order va r i a t ions  of t he  system s t a t e  caused by u n i t  per turbat ions of the  

parameters i n  F, G ,  and xo. These s e n s i t i v i t y  funct ions can be 

computed from the equations 

a G  k ( t )  =Fxgi j ( t )  +- u j ( t )  x (0) = O ,  g i  j agi j g i  j - 
i = l ,  . . ., n 

j = 1 , .  . . , p  

(5.2) 

i = l , .  ., n 

(5.3) 

i = l , .  . . , n  

j = l , .  . . , n  

(5.4) 

7A system with state coe f f i c i en t  matrix F is c y c l i c  i f  t h e r e  is a 

vec tor  Z so t h a t  t he  n vectors  [Fn-'Z I Fn-2Z I . . . I Z] are 

l i n e a r l y  independent. 
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The nota t ion  xg ( t )  denotes the  s e n s i t i v i t y  function f o r  t h e  parameter i j  
i n  the i t h  row and j t h  column of G.  Similar  de f in i t i ons  apply t o  

x f i j ( t )  and ~ , ~ ( ~ ) ( t ) .  

important r e s u l t .  

In  t h i s  chapter  w e  w i l l  e s t ab l i sh  t h e  following 

Result: If the  system (5.1) is  cyc l i c ,  t he  system response and the  

s e n s i t i v i t y  funct ions with respec t  t o  t h e  system parameters and i n i t i a l  

conditions can be obtained by l i n e a r  combinations of the  so lu t ions  t o  

(p + 2) d i f f e r e n t i a l  equations of order n. 

5.1.2 DeveloDment 

Since it is  assumed t h a t  t he  system is  cyc l i c ,  t he re  is a non- 

s ingular  transformation Tc so  t h a t  equations (5.1) can be wr i t t en  i n  

companion form ( r e f .  38) .8 

z ( t )  = Tcx(t) 

k( t )  = Az(t) + Bu(t) z(0) = z0 = TCxO 

The var ia t ions-  i n  

i n  A, B ,  and the i n i t i a l  conditions zo can be computed by the  

numerical so lu t ion  of 

z ( t )  caused by u n i t  per turbat ions i n  the parameters 

~ 

8The value of Tc is  given by t h e  inverse of the  matrix 

[Fn-lZ I Fnm2Z I . . . 1 Z ] where Z i s  any vector  such t h a t  an inverse 

e x i s t s .  
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(5.10) 

where b") i s  the  j t h  column of B and a(') is  the  f i rs t  column of A. 

The response z ( t )  can be obtained by l i nea r  superposi t ion from (5.8) 

and (5.9).  

(5.11) 

The system response, x ( t ) ,  and the  s e n s i t i v i t i e s  (5.2)-(5.4) can be 

obtained from (5.8)-(5.11) b; t h e  re la t ionships  

x ( t )  = T,lz(t) (5.12) 
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where repeated subscr ip ts  imply summation. 

which i s  s t a t e d  below, t h e  n(p + 2) s e n s i t i v i t y  funct ions (5.8)-(5.11),  

A s  a r e s u l t  of theorem 5.1 

hence the  model response (5.11),  can ac tua l ly  be computed by l i n e a r  

combinations of t h e  so lu t ions  t o  t h e  (p + 2) nth-order s ingle- input  

d i f f e r e n t i a l  equations 
~ 

ij ( t )  = ACj ( t )  + Zuj ( t )  ~ ' ( 0 )  = o ,  j = I ,  2 ,  . . ., p (5.16) 

gPfl ( t )  = A< P + l ( t )  (P+l(O) = z (5.17) 

kP'2(t) = AEp+2(t) + Zzl ( t )  Ep+2(0) = 0 (5.18) 

if the  vec tor  Z i s  chosen s o  t h a t  these  systems (5.16) t o  (5.18) are 

cont ro l lab le .  

thereby es tab l i shed .  

The r e s u l t  s t a t e d  i n  sec t ion  5.1 of t h i s  chapter i s  

Theorem 5.1: If the  so lu t ion  t o  t h e  s i n g l e  input  system 

i ( t )  = Fx(t)  + gu(t)  x(0) = 0 (5.19) 

i s  known, and i f  t h e  system i s  cont ro l lab le ,  then t h e  so lu t ion  t o  

the  system 
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k( t )  = Fz( t )  + g 'u ( t )  z(0) = 0 (5.20) 

f o r  a r b i t r a r y  g '  can be obtained by a l i n e a r  transformation, T, on the  

s o l u t i o n  f o r  x ( t )  ( i .e. ,  z ( t )  = Tx( t ) ) .  

Proof: If x ( t )  is  the  so lu t ion  of (5.19) then x j ( t )  Fx j ( t )  is 

t h e  so lu t ion  t o  

$(t) = Fxj ( t )  + Fjgu(t)  x j (0) = 0 (5.21) 

where 

j = 0, 1, 2,  3 ,  . . ., n - 1 

Since t h e  system (5.19) i s  con t ro l l ab le ,  he con-rol c o e f f i c i e n t  vec tors  

i n  (5.21), (g, Fg, . . ., F g) are l i n e a r l y  independent and t h e  cont ro l  

c o e f f i c i e n t  vec tor  g' i n  (5.20) can be expressed as a l i n e a r  

n- 1 

combination of t hese  vectors,  

~ n- 1 
g '  = aiFig 

i = O  
(5.22) 

Therefore, by l i n e a r  superposit ion t h e  response t o  equation (5.20) can be 

obtained from t h e  so lu t ion  t o  equation (5.19) by t h e  r e l a t i o n  

i= 0 i= o 

and t h i s  concludes the  proof. 

Comment: The a i  can be computed by t h e  equation 

I g1-l g '  

(5.23) 

(5.24) 

This is  immediately evident from (5.22). 
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Corollary 1: Theorem 5.1 a l s o  applies i f  (5.19) and (5.20) are 

homogeneous d i f f e r e n t i a l  equations with x ( 0 )  = g and z(0) = g ' ,  

respect ively.  

5.1.3 Higher Order Derivatives 

This same procedure can be used e f f i c i e n t l y  t o  generate  higher- 

order s e n s i t i v i t y  funct ions s ince  the  (n + 1) order s e n s i t i v i t y  funct ion 

i s  the f i r s t - o r d e r  s e n s i t i v i t y  of t he  nth-order s e n s i t i v i t y  funct ion.  

These higher-order s e n s i t i v i t y  funct ions are used i n  c e r t a i n  numerical 

methods suck as the  Newton-Raphson procedure which requi re  second o r  

higher-order p a r t i a l  der iva t ives .  

5.1.4 Special  Case 

Problem: Consider a s ingle-output ,  multi- input system t h a t  i s  

observable and cont ro l lab le .  The system can be modeled by equations of 

the form (5.6) and (5.7) where the  measurement y is  r e l a t e d  t o  z by 

y ( t )  = Hz(t) where H = (1  0 -. . . 0) .  Use t h e  so lu t ions  t o  a minimal 

number of d i f f e r e n t i a l  equations t o  compute the  va r i a t ions  of t he  

measurements y ( t )  due t o  u n i t  per turbat ions i n  the system parameters 

and i n i t i a l  condi t ions.  

t i v i t y  funct ions (5.8) t o  (5.10) by the  relationshi.ps 

These va r i a t ions  can be computed from the  sens i -  

(5.25) 

(5.26) 

(5.27) 
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Solution: Choose the vector Z in equations (5.16) to (5.18) to 

be 

ZT = [O O . . . l ]  

The corresponding controllability matrix [An-lZ I An-2Z I . . . I Z] is 

the identity matrix, and the systems are controllable. The solutions to 

equations (5.16) to (5.18) can therefore be used with the transformations 

defined in theorem 5.1 to obtain the sensitivity functions for the system. 

The variations of the system measurements, y, are related to the solu- 
k tions, .E, (t), k = 1, 2, . . ., p + 2, by the following transformations 

I Yb. . (t) = HAn-i<j (t) i = 1, 2, . . ., n 
j = 1, 2, . . ., p 
i = 1, 2, . . ., n 

11 

HAn-i 5 p+1 (t) 

n-i p+2 

YZi(#) = 

y.(t)=HA 6 (t) i = 1 , 2  , . . . ,  n a1 

(5.28) 

Equations (5.28) provide a solution to the stated problem; however, the 

computational savings due to the reduction in the number of required 

solutions to differential equations is somewhat offset by the algebraic 

transformations. These transformations can be eliminated from the 

computations by defining the vector 

Pk(t) = (5.29) 

The variations in y are then given by the components of pk(t) 
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(5.30) 

k k where p i ( t )  i s  the  i t h  component of the  vector  p ( t ) .  The vectors ,  

p k ( t ) ,  are the  numerical so lu t ions  of t he  equations 

fiP+2(t) = + z ' z l  P p+2(o) = 0 

where 

( 2 ' ) T  = [l 0 . . . 01 

and where (by eqs. (5.11) and (5.30)) 

5.1.5 Application With the  Combined Algorithm 

In the  combined algorithm, the  system i s  modeled so t h a t  the 

measurements a c t  as addi t iona l  inputs  t o  the  model, and the  s e n s i t i v i t i e s  

of t h e  parameters i n  the  s t a t e  coe f f i c i en t  matrix,  FN, are not  required.  

There are p + m inputs  t o  t h i s  model where p i s  the  number of ac tua l  

inputs  and m i s  the  number of measurements. 

nth-order d i f f e r e n t i a l  equations are required t o  obtain a l l  of the  

s e n s i t i v i t i e s  used i n  the  combined algorithm. 

then the  so lu t ions  t o  any set  of equations of the form 

A maximum of (p + m + 1) 

If the  system is cyc l i c  
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(5 .32)  I ij = F N S ~  + ~u 

eP+i = FNSp+i + Zyi 

~ ' ( 0 )  = o 

c P + ~ ( o )  = o 

tp*m+l (0) = z 

j = 1, 2, . . ., p j 

i = 1, 2,  . . ., m 

gp+m+l - - FNCp+m+l 

(where 2 i s  chosen so t h a t  t h e  systems are cont ro l lab le)  can be used 

t o  obta in  the  requi red  s e n s i t i v i t y  func t ions .  

5.2 COMPUTATION OF THE INTEGRALS OF THE SQUARED SENSITIVITY FUNCTIONS 

5.2.1 Continuous Measurements 

In  addi t ion  t o  t h e  s e n s i t i v i t y  equations, t h e  function 

n 

i= 1 
AT(ti)WA(ti) or  itf AT(t)WA(t)dt (5 .33)  

must be computed. If the re  a r e  q unknown parameters, these  matrices 

conta in  q(q + 1)/2 summations o r  i n t eg ra t ions  with each involving m 

summations. 

is  t o  take  advantage of the  r e l a t ionsh ips  among the  elements of these  

An a l t e r n a t i v e  t o  t h e  d i r e c t  computation of these  matrices 
~ 

matrices provided by t h e  s e n s i t i v i t y  equations.  F i r s t  w e  w i l l  consider 

the  continuous case and then extend the  r e s u l t s  t o  the  case of d i s c r e t e  

measurements by applying numerical i n t eg ra t ion  approximations. 

Because the  components of  t he  matrix A(t) ( the  matrix of sens i -  

t i v i t y  functions) can be obtained by l i n e a r  transformations of the  

so lu t ions  t o  (p + m + 1) nth-order d i f f e r e n t i a l  equations (which w e  w i l l  

refer t o  by t h e  vec tor  0T = [ E l T  I 52T 1 . . . 1 gPCm+lT] , t h e  elements 

of (5 .33)  can be obtained by l i n e a r  combinations of the  elements i n  t h e  

matrix 

ltf d t  
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A d i f f e r e n t i a l  equation f o r  €leT can be obtained from equation (5 .32)  

+ 

This implies t h a t  

YTl 

P 
0 

0 

0 

ZT 

O . . . Z T  

Z +it' 0 . 

[. 0 

YTl 

(5.35) 

O l  

d t  ( 5 . 3 6 )  

which provides a set  of [(p + m + l )n]  [(p + m + l ) n  + 1] /2  l i n e a r  

equations i n  the  [ (p + m + 1)n) [ (p + m + 1)n + 11 / 2  unknowns of 

Jtf eeT d t  and the  [ (p + m)2(2n - 1) + (p + m) (2n + 1)] /2  unknowns of 
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T FN and -FN have no common I t  is well known ( r e f .  38) t h a t  if 

eigenvalues,  equation (5 .36 )  can be solved uniquely f o r  &tf OeT d t  

i n  terms of 

and ( 5 . 3 7 ) .  Clearly,  if FN i s  s t a b l e  with no eigenvalues with zero 

real p a r t s ,  it w i l l  have no eigenvalues i n  Common with - F i  and t h e  

above equation can be solved. In  general ,  t h i s  procedure requi res  fewer 

in t eg ra t ions  than would otherwise be required.  There are algorithms 

ava i l ab le  f o r  solving t h e  matrix equation (5 .36 )  (see refs. 39 and 40),  

and it would appear t h a t  some advantage can be gained by using t h i s  idea.  

Example 5.1 Single-Input,  Single-Output, Second-Order System 

Consider a s t a b l e  (no eigenvalues with real p a r t s  g rea t e r  than o r  

equal t o  zero) ,  s ingle- input ,  s ingle-output ,  second-order system modeled 

i n  i t s  canonical form, 

where 

Suppose h a t  

x = A x + B u  

y = cx 
- ( 5 . 3 8 )  I x(0) = xo 

c = [l 01 
bo ?I - 

he two parameters i n  A ,  t he  two parameters i n  B ,  and t h e  

two i n i t i a l  condi t ions are t o  be iden t i f i ed .  The s e n s i t i v i t y  funct ions 

can be obtained by t h e  numerical so lu t ion  of  equation ( 5 . 3 1 )  which were 

developed i n  sec t ion  5.1.4 e n t i t l e d  "Special Case." The matrix of sens i -  

t i v i t y  funct ions,  A(t) (which i s  not  t o  be confused with t h e  s t a t e  

coe f f i c i en t  matrix A i n  t h i s  example), i s  given by 

A(t) = p l T ,  p2T, p3T]  [ 
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and the  matrix of i n t eg ra l  squares of t he  s e n s i t i v i t y  functions i s  equal 

t o  
t f 

AT(t)WA(t)dt (5.39) 

Because t h i s  is  a single-output system, W is  a s c a l a r  and can be s e t  

equal t o  uni ty .  Expression (5.39) is  a 6 x 6 symmetric matrix and can 

be computed by performing 2 1  in tegra t ions .  

I f  t he  procedure out  l ined i n  expressions (5.34) through (5.36) i s  

followed, it can be shown t h a t  the  matrix lotf AT(t)A(t)dt must s a t i s f y  

the  equation 

- - if ,"r l ] ~ ~ T ( t ) A ( t ) d t  +/:T(t)A(t)dt[ 1 
0 0 

0 AT 

(5.40) 

where 

77 



and where 

t f 

=i 0 

0 - 

u P 2  1 UP 12+YP11 

1 
YP 2 0 

2YP l 2  

0 0  

Z I T  0 

w13 

yp13 

0 

0 

0 

 UP^^ 

Y P , ~  

0 

0 

0 

0 

(5.41) 

Since t h e  system i s  s t a b l e ,  w e  can compute t h e  11 in t eg ra l s  i n  

equation (5.41) and then so lve  the  a lgebra ic  equation (5.40) f o r  t he  

21 i n t e g r a l s  i n  

10 equations provided by (5.40) f o r  which t h e  terms i n  (5.41) are equal 

t o  zero. If w e  compute the  11 i n t e g r a l s  

Itf AT(t)A(t)dt. Another procedure is  t o  use only t h e  
0 

then the  10 p e r t i n e n t  equations i n  (5.40), 

1. 

2 .  P 2  2 2  p 2  It=,, = 2 p l 2 p z 2  d t  
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7 .  

can be used t o  so lve  f o r  t h e  remaining 10 i n t e g r a l s  as ind ica ted  
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5 . 2 . 2  Extension t o  Discrete Measurements 

Numerical i n t eg ra t ion  approximations f o r  the i n t e g r a l s  i n  (5.36) can 
N 

i= 1 
be used t o  compute the  matrix AT(ti)WA(ti) i n  the  case of d i s c r e t e  

measurements. Let c i j ( t )  be an element i n  the  matrix AT(t)WA(t) (see 

f i g .  4) and l e t  t i m e  be indexed from 1 t o  tl = 0 and t N  = tf. 

The re la t ionships  between the  in t eg ra t ions  and the  summations a r e  given 

N where 

here  f o r  the  rectangular ,  t rapezoidal ,  and Simpson's r u l e  i n t eg ra t ion  

rout ines .  

1. Rectangular i n t eg ra t ion  rout ine  

o r  
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2. Trapezoidal i n t eg ra t ion  rou t ine  

o r  

3. Simpson's rule in t eg ra t ion  rou t ine  (modified) 

The Simpson's r u l e  rou t ine  requi res  t h a t  t h e  t o t a l  in tegra t ion  

i n t e r v a l  be divided i n t o  an even number of subin terva ls  ( the  function is  

evaluated a t  an odd number of po in t s ) .  If t h e  function i s  evaluated f o r  

an even number of po in t s ,  t he  t rapezoida l  method can be used t o  i n t e g r a t e  

over one of t he  end subin terva ls  and Simpson's r u l e  used f o r  t he  

remainder of t he  in t eg ra t ion .  However, appl ica t ion  of Simpson's r u l e  

does not provide a d i r e c t  r e l a t ionsh ip  between ltf clk( t )  d t .  

N 

i= 1 
3Zk( t i )  and - 

Let us assume t h a t  t h e  t o t a l  i n t eg ra t ion  i n t e r v a l  i s  divided i n t o  

an even number of i n t e r v a l s  or  t h a t  N i s  an odd number. Simpson's 

rule provides the  r e l a t ionsh ip  

This i n t eg ra t ion  can a l s o  be approximated by using a t rapezoida l  

i n t eg ra t ion  over t h e  first and last subin terva ls  and using Simpson's r u l e  

f o r  t he  poin ts  between. This procedure r e s u l t s  i n  t h e  r e l a t ionsh ip  
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1 + - A t  3 

A d i r e c t  r e l a t ionsh ip  between t h e  in t eg ra t ion  and summation can now be 

obtained by taking the  average of approximations ( i )  and ( i i ) ,  

Ctk( t )d t  ~5 ( i  + i i ) / 2  
0 

- N  

I" 
= A t  

or 

( i i i )  
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VI APPLICATIONS 

6.1 LINEAR SYSTEMS 

6.1.1 Simulated Data 

The short-period dynamics of t he  C-8 a i rp lane  i n  the  landing 

approach were simulated and the  a t t i t u d e  rate response due t o  an e leva tor  

def lec t ion  was computed. 

Three d i f f e r e n t  noise  sequences, a l l  having a var iance of (0.005) rad2 

The i n i t i a l  conditions were set  equal t o  zero. 

and a 0 . 2  second co r re l a t ion  t i m e  constant ,  were added t o  t h i s  a t t i t u d e  

r a t e  da t a  t r  g ive th ree  different '  runs. These same three  noise  sequences 

were a l s o  subtracted from the  a t t i t u d e  rate da ta  t o  give three  addi t iona l  

runs making a t o t a l  of s i x  runs. 

For t h i s  p a r t i c u l a r  example it is  convenient t o  model t he  unknown 

system i n  its canonical form. 

equations of motion with only measurements of a t t i t u d e  r a t e  is  given by 

The canonical form f o r  the  short-period 

where zl  i s  the  a t t i t u d e  rate, z2 is a l i n e a r  combination of a t t i t u d e  

rate and angle of a t t ack ,  and 6, is  t h e  e leva tor  def lec t ion .  The set 

of parameters i n  K, L, 6G, and 62, which can be used t o  iden t i fy  the  

unknown parameters i n  equations (6.1) are 

To i l l u s t r a t e  t h e  equations of motion method and response curve 

f i t t i n g  method port ions of t he  combined algorithm independently, t h e  s i x  
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runs were first analyzed by means of the equations of motion method 

por t ion  of t he  algorithm. 

form were averaged over t he  s i x  runs t o  reduce the  e r r o r  i n  these  esti-  

mates due t o  var iance and thereby i l l u s t r a t e  t he  b i a s  e r r o r .  

averaged estimates are p lo t t ed  i n  f igu re  5 aga ins t  t he  number of i tera-  

t i ons .  

the  zero estimate, was purposely made considerably d i f f e r e n t  from the  

ac tua l  values t o  emphasize the  i n s e n s i t i v i t y  of t he  convergence on t h i s  

i n i t i a l  estimate. By t h e  second i t e r a t i o n ,  t h e  procedure has e s s e n t i a l l y  

reached a s teady-s ta te  value f o r  t he  unknown parameters, and subsequent 

The estimated parameters of t he  canonical 

These 

The i n i t i a l  choice of t he  parameters, FN, HN, and GN, denoted by 

i t e r a t i o n s  do not  s i g n i f i c a n t l y  change these est imates .  

po in t  is  t h a t  t he re  i s  a very d e f i n i t e  b i a s  i n  these answers. 

The important 

To i l l u s t r a t e  t h a t  the  b i a s  observed i n  f igu re  5 can be eliminated 

by switching t o  the  response curve f i t t i n g  method, the  f i n a l  averaged 

estimates obtained by the  ecpations of motion method i n  f igure  5 were 

used t o  i n i t i a t e  t he  response curve f i t t i n g  method f o r  t he  same s i x  runs.  

The average values of these  estimates a r e  p lo t t ed  against  the  number of 

i t e r a t i o n s  i n  f igu re  6. As i s  shown, the  b i a s  i s  quickly removed. The 

f i n a l  averaged parameter estimates are very c lose  t o  the  ac tua l  values.  

6.1.2 F l igh t  Data 

The combined parameter es t imat ion algorithm is  a l s o  i l l u s t r a t e d  

here  by appl ica t ion  t o  two s e t s  of f l i g h t  data .  The first set  of da t a  

included measurements of the a t t i t u d e  rate and e leva tor  de f l ec t ion  f o r  

t he  6-8 a i rp l ane  i n  the  landing approach configuration over a period of 

4 seconds. These da t a  were used t o  iden t i fy  the  coe f f i c i en t s  of the  

t r a n s f e r  funct ion r e l a t i n g  p i t c h  rate t o  e leva tor  def lec t ion .  

plane was i n i t i a l l y  trimmed and therefore  the  i n i t i a l  conditions were 

The air- 
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assumed t o  be zero. 

def lec t ion .  

the  phugoid (long-period) mode was not noticeably excited.  

reason, t he  system was represented by t h e  short-period dynamics and was 

modeled by the  single-output canonical form (6.1). 

c i en t s  are p lo t t ed  aga ins t  t he  number of i t e r a t i o n s  i n  f igu re  7. 

The aircraft was exci ted by a doublet type elevator  

Because of t he  type of input  and t h e  sho r t  durat ion of data ,  

For t h i s  

The estimated coef f i -  

The 

i n i t i a l  o r  zero estimate was purposely made 

the  expected system parameters t o  emphasize 

the method on t h i s  i n i t i a l  estimate. After 

e t e r s  s e t t l e d  t o  a s teady-s ta te  value. The 

considerably d i f f e r e n t  from 

again the  i n s e n s i t i v i t y  of 

four  i t e r a t i o n s ,  t he  param- 

equations of motion method 

port ion of t h e  combined algorithm was used during the  first two itera- 

t ions.  The combined algorithm then switched t o  the  response curve 

f i t t i n g  method. 

An indica t ion  of t he  accuracy of t h i s  i d e n t i f i c a t i o n  is i n  

f igure  8. 

s i d e  of t h e  f igure.  

The time h i s to ry  of t h e  e leva tor  input  is  shown on the  le f t  - 
This input was used together  with t h e  iden t i f i ed  

system dynamics 

( 6  3) 
.. 
q + 2.276 4 + 2.558 q = -1.913 i e  - 1.82 6, 

t o  compute an estimated a t t i t u d e  r a t e .  The computed a t t i t u d e  rate i s  

shown by t h e  s o l i d  l i n e  on the  r i g h t  s i d e  of t h e  f i g u r e  and the  measured 

a t t i t u d e  r a t e  by the  symbols. Clearly,  the  estimated t r a n s f e r  function 

provides a very good re la t ionship  between the input and output data .  

The second set of da ta  included measurements of the  a t t i t u d e  rate, 

forward ve loc i ty ,  v e r t i c a l  accelerat ion,  angle of a t tack ,  and e leva tor  

def lec t ion  f o r  the  C-8  a i rp lane  i n  the  landing approach configuration 

over a period of 17 seconds. 

eters i n  the  l inear ized  longi tudinal  equations of motion. 

the  phugoid dynamics were d e f i n i t e l y  exci ted.  

These da ta  were used t o  iden t i fy  the  param- 

In  t h i s  case, 

The body axes of t h e  
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a i rp lane  were near ly  a l ined  with the  s t a b i l i t y  axes so t h a t  t h e  vertical 

t r i m  ve loc i ty ,  wo, was set equal t o  zero. The vehicle  and measurements 

were modeled by the  equations 

XU 
m 
- -g -wo 0 

0 0 1 0 

-20 5 0 0 - 20 m 

0 1 0 ZU 

m0 
- 

The states u, 8 ,  q, and a are 

0 

201 -20 - m 

+ 

the  per turbat ions i n  forward 

veloci ty ,  a t t i t u d e ,  a t t i t u d e  rate, and angle of a t tack  from l eve l  steady- 

state f l i g h t ;  az is a f i l t e r e d  measurement of t h e  vertical  accelerat ion.  

The f i l t e r  time constant was 0.05 second, and t h i s  is  indicated by the  

f a c t o r  of 20.0 occurring i n  t h e  equation f o r  accelerat ion.  The control  

var iable ,  is the  e leva tor  def lec t ion .  The t r i m  ve loc i ty  uo and 

t h e  grav i ta t iona l  constant g are assumed known. The vehicle  was i n i -  

t i a l l y  trimmed, so  the  i n i t i a l  conditions were assumed t o  be zero. The 

other  parameters i n  the  

mass cha rac t e r i s t i c s  of t he  vehic le  and are considered unknown. 

F and G matrices depend on t h e  aerodynamic and 

In  t h i s  case i t  i s  not necessary t o  go t o  t h e  canonical form. Since 

t h e  unknown parameters i n  (6.4) are coe f f i c i en t s  of t h e  measured states, 

u, q, and a, a matrix FN can be chosen i d e n t i c a l  t o  F except f o r  t he  

numeric values of t h e  unknown parameters and s t i l l  be r e l a t ed  t o  F by 

the  equation 

four th  and f i f t h  rows of F and G i n  (6.4) ( i . e . ,  f 4 1 =  -2Ouof51, 

FN = F - KH. The dependency between the  parameters i n  the  
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f 4 5  = -20u0f55, and g4, = - 2 O ~ ~ g ~ ~ )  can be maintained by including t h i s  

dependency i n  FN and by def ining K and 6 G  as indicated below. There 

a re  only seven unknown parameters i n  K and two i n  6G. The set of 

parameters i n  K ,  L, 6G, and 6zo t o  be used i n  the  combined algorithm 

is  given by 

K =  

6G = 

K 1 1  0 0 K1 4 

0 0 0 0 

Kg 1 K32 K3 4 

- 2  O'OK 5'1 0 0 -20u0KS4 

K51 a 0 K54 

, 6ZO = 0 

, L = O  

Since t h i s  i s  a multioutput s i t u a t i o n ,  an appropriate  weighting 

matrix, W, must be chosen f o r  use i n  equation ( 4 . 1 ) .  For t h i s  example, 

the  rec iproca ls  of the  weightings on u ,  q, a ,  and 01 

(1 f t / s e c ) 2 ,  ( l o / sec )2 ,  (1 f t / s ec2 )2 ,  and ( 2 ° ) 2 ,  respect ively,  and 

reflect the  r e l a t i v e  confidence i n  t h e  measurements. 

were chosen t o  be 

The r e s u l t s  of t h i s  i d e n t i f i c a t i o n  are shown i n  the  10 columns of 

f igu re  9. 

i n i t i a l  estimates used t o  start  the  algorithm a re  given i n  the  second 

column. 

The parameter symbols a r e  given i n  the  first column. The 

The t h i r d  and four th  columns give the  estimates after the  first 

two i t e r a t i o n s  using t h e  equations of motion method. The remaining 
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columns correspond t o  successive i t e r a t i o n s  using t h e  response curve 

f i t t i n g  method. 

occur a f t e r  the  t h i r d  o r  four th  i t e r a t i o n .  

S igni f icant  changes i n  the  unknown parameters do not 

The iden t i f i ed  parameters were used with t h e  measured input  t o  

compute time h i s t o r i e s  of t he  ve loc i ty ,  a t t i t u d e  rate, v e r t i c a l  accelera- 

t i on ,  and angle-of-attack per turbat ions.  The computed and measured 

quan t i t i e s  a re  compared i n  f i g u r e  10. A s  i n  t he  f i r s t  example, t he  

estimated parameters provide a very good re la t ionship  between the  input  

and outpdt data .  

6.1.3 Dig i ta l  Modeling of Continuous Systems 

There a r e  many in t eg ra t ion  algorithms t h a t  can be used t o  solve 

d i f f e r e n t i a l  equations on a d i g i t a l  computer. 

algorithm discussed i n  t h i s  repor t  has been implemented by the  Adams- 

Moulton method, t he  Runge-Kutta method, and a d i s c r e t e  t r a n s i t i o n  matrix 

The i d e n t i f i c a t i o n  

method. A l l  th ree  methods were used t o  estimate the  parameters i n  the  

short-period t r a n s f e r  function r e l a t i n g  p i t c h  rate t o  e levator  def lec-  

t i on  from f l i g h t  data .  Figure 11 shows a comparison of  the  r e s u l t s .  

For t h e  sample length (0.05 sec) and f o r  t he  dynamics i n  t h i s  

problem, the  e f f e c t  of the  in t eg ra t ion  algorithm on the  parameter e s t i -  

mates is  negl igible .  

matrix methods a r e  used, some care  must be taken i n  in t e rp re t ing  the  

input .  

However, when the  Runge-Kutta and t r a n s i t i o n  

If t h e  Runge-Kutta method i s  used, then the  so lu t ion  of t he  

ti + A t  d i f f e r e n t i a l  equations a t  t i m e  

equations a t  time ti and on the  input  a t  times ti, ti + A t / 2 ,  and 

ti + A t  = ti+l. The input  u ( t )  is measured only a t  times ti, and 

tii-1; i t  must therefore  be approximated a t  time ti + At /2 .  Since u ( t )  

depends on the  so lu t ion  of t he  
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PARAMETERS INTEGRATlON 
ALGORITHM I 

TRANSITION MATRIX 

I I I I 

ADAMS-MOULTON -1.960 -589 -1.976 -1.559 

-1.968 -588 -1.982 -1.556 

] RUNGE-KUTTA 1--1.966 I -593 I -1.980 I -1.560 I 

Figure 11. - Effect  of i n t eg ra t ion  algorithms on the  parameter es t imates .  

95 



i s  a continuous func t ion  and A t  is  q u i t e  small, it may seem t h a t  

u ( t i  + At/2) can be  approximated by e i t h e r  u ( t i )  o r  U ( t i + I ) .  I t  is 

c l e a r  t h a t  such an approximation w i l l  change the  phase r e l a t ionsh ips  

between t h e  input  and t h e  output. 

u ( t i  + At/2)  i s  given by a l i n e a r  i n t e rpo la t ion  of t he  measured da ta ,  

A b e t t e r  approximation f o r  

U ( t i  + At/2) = (U(ti)  + U(t i+ l ) ) /2  (6.7) 

The e f f e c t  of these  th ree  i n t e r p r e t a t i o n s  of  t h e  input on the  estimates 

f o r  t h e  parameters i s  i l l u s t r a t e d  i n  f i g u r e  12 .  

estimates i s  s i g n i f i c a n t .  

obtained by using (6.7).  

The d i f f e rence  i n  t h e  

The estimates presented i n  f i g u r e  11 were 

In  the  t r a n s i t i o n  matrix method, t h e  d i f f e r e n t i a l  equations a r e  

represented by t h e  d i s c r e t e  equations 

(6 8) I x ( t i + l )  = Q x ( t i )  + r i ( t i )  

Y( t i )  = M C t i )  
~ 

where ; ( t i )  is  a piecewise constant approximation of t he  input  u ( t ) .  

The matrices Q and r are r e l a t e d  t o  t h e  F and G matrices i n  t h e  

d i f f e r e n t i a l  equations by 

F a t  @ = e  

= F-’[Q, - I]GG(ti) (6.10) 

The parameters can be estimated from the  estimates of 

r e l a t ionsh ips  

Q, and r by t h e  
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PAR AM ETE RS 

APPROXIMATED BY 

u(ti) + u(ti + At) 
2 -1.966 -.593 -1.98 -1.560 

I u(ti + At) 1 -1.876 I -.820 I -1.907 I -1.788 I 

Figure 1 2 . -  Effec t  of input  i n t e rp re t a t ion  on parameter 
estimates - Runge-Kutta. 
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Again, s ince  u ( t )  is continuous and A t  is small, i t  may seem t h a t  

; ( t i )  can be approximated by e i t h e r  

t i o n s  w i l l  cause an e r r o r  i n  the  phase re la t ionships  between the  input  

and output.  

u ( t i )  o r  u ( t i + l ) .  Both approxima- 

A b e t t e r  approximation i s  t o  use an averaged value f o r  ; ( t i )  

(6.12) c ( t i )  = [ u ( t i I  + u ( t i + l I I / 2  

The effect of these  th ree  in t e rp re t a t ions  of t he  input on the  estimates 

f o r  t h e  parameters i s  i l l u s t r a t e d  i n  f igu re  13. 

t he  Runge-Kutta method, t he  difference i n  the  estimates is  s ign i f i can t .  

As i n  t h e  discussion of 

The e s t i n a t e s  i n  f i g u r e  11 were obtained by using equation (6.12). 

6.1.4 Effects of Certain Model E r r o r s  

If one suspects t h a t  there  are biases  i n  the  measurements and i f  

there  a r e  unce r t a in t i e s  i n  the  i n i t i a l  conditions,  then these  quan t i t i e s  

should be estimated as well  as  t he  parameters i n  the  d i f f e r e n t i a l  

equations. 

of t h e  system parameters i s  i l l u s t r a t e d  i n  t h i s  sec t ion .  

The e f f e c t  of including these terms i n  the i d e n t i f i c a t i o n  

A maneuver similar t o  t h a t  discussed i n  the  f i rs t  p a r t  of 

sec t ion  6.1.2 was repeated e igh t  times during a s ing le  f l i g h t  of  the  C-8  

a i rp lane .  

e t e r s  i n  t h e  t r a n s f e r  funct ion r e l a t i n g  p i t c h  r a t e  t o  e levator  def lec-  

The da ta  from each maneuver were used t o  estimate the  param- 

t i on .  Although the  plane approached s teady-s ta te  t r i m  conditions between 

maneuvers, the  i n i t i a l  conditions and the  t r i m  e leva tor  pos i t ion  were not 

q u i t e  zero. 

conditions and unknown biases  were assumed t o  be zero. The r e s u l t s  of 

In  the  first i d e n t i f i c a t i o n  of these parameters, t he  i n i t i a l  

t h i s  i d e n t i f i c a t i o n  are shown i n  f igu re  14. The parameter symbols are 

given i n  t h e  f i rs t  column; the  estimates f o r  these parameters obtained 

from the  individual  maneuvers are given i n  the  next e ight  columns. The 

l a s t  two columns contain the  mean and mean squared e r ro r  of these  param- 

eters. 
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mi) 
APPROXIMATED BY 

I Ubi) -2.091 -.290 -2.131 -1.255 

PARAMETERS 

bo a1 a0 b, 

L I I I I I 

u(ti + At) -1.832 -.941 -1.881 -1.909 

Figure 13. -  Effect of input  i n t e r p r e t a t i o n  on parameter 
estimates - t r a n s i t i o n  matrix method. 
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the mean squared e r r o r  was computed by averaging the  square of 

d i f fe rence  between the  estimated parameters and the  computed mean. 

parameters obtained from the s i x t h  maneuver were not included i n  these 

computations because they were subs t an t i a l ly  d i f f e r e n t  from those 

obtained during the  other  maneuvers. 

system response is  defined by 

The 

The mean square e r r o r  of t he  

M.S.E. = 

where q i s  the  a t t i t u d e  

(6.13) 

rate and i s  indicated i n  t h e  bottom row of t he  

f igure.  

da ta  as indicated by the  M.S.E., there  is  a l a rge  va r i a t ion  i n  the  esti- 

mated parameters. 

f i e d  i n  the  first maneuver. 

da ta  from t h e  t h i r d  maneuver. 

Although the  estimated parameters provide a good f i t  of t he  

This i s  p a r t i c u l a r l y  t r u e  f o r  t h e  parameters i den t i -  

The algorithm did  not  even converge f o r  t he  

In the  second i d e n t i f i c a t i o n  of t h e  system parameters, the  i n i t i a l  

conditions were a l s o  t r ea t ed  as unknown parameters. 

shown i n  f igu re  15. The i n i t i a l  conditions are indicated i n  the  f i rs t  

column by t h e  symbols x l (0)  and x2(0). The estimated parameters i n  the  

f i rs t  maneuver agree b e t t e r  with those obtained from the  other  maneuvers 

and the  t h i r d  maneuver converged without d i f f i c u l t y .  Again, t he  e s t i -  

mates of t h e  parameters f o r  t he  s i x t h  maneuver were not included i n  the  

computation of t h e  mean and mean squared e r r o r  f o r  t he  parameter esti-  

mates. 

variance i n  the  parameter estimates by near ly  a f ac to r  of 3 .  

The r e s u l t s  are 

Including the  i n i t i a l  conditions has reduced the  computed 
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I n  the  t h i r d  i d e n t i f i c a t i o n ,  t he  i n i t i a l  conditions and a b i a s  

e r r o r  i n  the  t r i m  e l eva to r  pos i t i on  were t r e a t e d  as unknown parameters.g 

The r e s u l t s  of t h i s  i d e n t i f i c a t i o n  are i l l u s t r a t e d  i n  f i g u r e  16. The 

computed variances f o r  t h e  parameters bo and a. have been reduced from 

the  r e s u l t s  i n  f i g u r e  15 and t h i s  i d e n t i f i c a t i o n  appears t o  be t h e  b e s t  

of t h e  t h r e e  considered. 

6.2 IDENTIFICATION OF A NONLINEAR SYSTEM USING A COMBINED ALGORITHM 

6.2.1 Problem Statement 

This problem was posed by personnel of t h e  Cornel1 Aeronautical 

Laboratory who supplied the  equations of  motion as well as t h e  simulated 

da ta .  

VTOL type aircraft  and are given i n  body axes by 

The equations of motion descr ibe  the  longi tudina l  response of 

k = A E ] ,  

y = i + v ( t )  x = 

z T =  [qu, u2, UW, 

A =  

0 

XU 

ZU 

Mu 

0 

XW 

zw 

Mw 

qw, sin(Oo + 

1 0 

@ o  

@ @  
Mq Mqu 0 0 0  

11 

0 0 

'6, 

'6 e 

M6 e 

A' = A except t h a t  t h e  c i r c l e d  terms are zero. I 
(6.14) 

9Because t h i s  i s  a s ingle- input  single-output problem, t h e  effect of 

any b ia ses  i n  t h e  measurements w i l l  be eliminated by t r e a t i n g  t h e  i n i t i a l  

conditions and a b i a s  i n  t h e  input as unknown parameters. 
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0 ,  u,  w,  and q 

ve loc i ty ,  vs r t ica l  ve loc i ty ,  and a t t i t u d e  rate, 

t i ons  i n  ft/sec2, 6, 

with zero mean and covariance 

are deviat ions from t h e  t r i m  a t t i t u d e ,  hor izonta l  

nx and n Z  a r e  accelera-  

is  the  e leva tor  input ,  and the  noise  is  gaussian 

The parameters wo, uo, and g i n  A a r e  assumed known. The remaining 

parameters a re  t o  be estimated. 

a b i l i t y  02 these  parameters i s  dependent on the  input .  

I t  should be noted t h a t  t he  i d e n t i f i -  

For example, i f  

6, 

coe f f i c i en t s  of  u and uge; these  coe f f i c i en t s  must therefore  be 

combined . 

i s  a s t e p  input  t he re  is no way of d i s t inguish ing  between the  

6 . 2 . 2  Estimation Technique 

Using the  measurement e r r o r  techniques, w e  w i l l  minimize the  

funct ion - 

with respec t  t o  the  unknown parameters i n  the  cons t ra in t  equations 

Y A = r 3 x ; ,  - - - - - - - -  I O ] ~ ] ~  c ~] J 

(6.16) 

(6.17) 

where W i s  a diagonal matrix and the  elements i n  W are updated by 

taking the  inverse of the  sample variances of t he  res idua ls ;  i n  o ther  

words, W i s  set  equal t o  the  inverse of t he  estimate f o r  R. One 

method f o r  solving t h i s  problem i s  t h e  method of quas i - l inear iza t ion  
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discussed i n  Chapter 2.  

convergence i f  i n i t i a t e d  from a s u f f i c i e n t l y  accurate  i n i t i a l  estimate, 

an i n i t i a l  estimate i s  not always ava i lab le .  

algorithm i s  t o  modify the  ex i s t ing  computational s t r u c t u r e  i n  order t o  

implement an equation e r ro r  method on the  f i rs t  i t e r a t i o n .  

example, an appropriate  modification is  p a r t i c u l a r l y  s t ra ightforward.  

The response, yN, and the  components of t h e  matrix of s e n s i t i v i t y  

functions A(t) a r e  computed by 

Although quas i - l inear iza t ion  provides fast 

The idea behind a combined 

In t h i s  

and 

(6.18) 

(6.19) 

where yyi is the  i t h  column of  A(t) .  If on the  first i t e r a t i o n ,  w e  

set  xyf equal t o  zero f o r  a l l  i ,  and use the  measured da ta  t o  compute 

the  vector  , we have the  der iva t ive  method which was discussed i n  
LZN J 

example 2 .1 .  

6.2.3 Results 

The r e s u l t s  of t h i s  i d e n t i f i c a t i o n  are i l l u s t r a t e d  i n  f igu res  17(a) 

and 17(b). 
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, 

second column contains the  ac tua l  values of t h e  parameters used t o  gener- 

a t e  t h e  da ta .  The t h i r d  column gives t h e  estimates obtained by t h e  equa- 

t i o n s  of motion method. The next f i v e  columns contain estimates of t h e  

parameters obtained from successive i t e r a t i o n s  by t h e  method of quasi- 

l i nea r i za t ion .  The last column contains estimates of t he  mean square 

e r r o r  i n  t h e  parameter estimates. These estimates were obtained by 

means of equation ( 2 . 3 2 ) .  

The numerical values of t h e  parameters used i n  t h e  W matrix do 

not affect t h e  parameter estimates obtained i n  t h e  equations of motion 

method f o r  t h i s  problem. These parameters were set  equal t o  the  number 

l / R i i ,  i = 1, . . ., 7 l i s t e d  i n  the  f i r s t  column of f i g u r e  17(b). 

These parameters were held f ixed  u n t i l  t h e  t h i r d  i t e r a t i o n  a t  which time 

they were estimated from t h e  r e s u l t i n g  r e s idua l s .  These estimates were 

used t o  update the  weighting matrix i n  t h e  fou r th  i t e r a t i o n .  S imi la r ly ,  

t h e  estimates obtained f o r  t hese  parameters i n  t h e  fou r th  i t e r a t i o n  were 
- 

used t o  update the  weighting matrix i n  t h e  f i f t h  i t e r a t i o n .  
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V I 1  CONCLUDING REMARKS 

A method of parameter estimation has been presented t h a t  combines 

t h e  b e s t  p rope r t i e s  of t h e  equations of motion and response curve f i t t i n g  

techniques. In  t h e  absence of noise ,  t h e  procedure provides a weighted 

leas t - squares  estimate f o r  t he  unknown parameters i n  a s i n g l e  operation. 

If t h e r e  i s  noise  i n  t h e  system, t h i s  estimate w i l l  be biased. The b i a s  

e r r o r  can be removed by applying t h e  procedure i t e r a t i v e l y .  

A canonical form i s  presented f o r  multioutput systems. 

the  system i n  t h i s  canonical form provides a s e t  of i d e n t i f i a b l e  

Modeling 

parameters t h a t  can be estimated using the  combined algorithm. 

The combined algorithm has been applied successfu l ly  t o  t h e  

i d e n t i f i c a t i o n  of t h e  parameters i n  the  longi tudina l  equations of 

a i r c r a f t  motion using both simulated and f l i g h t  da ta .  
I 
I 
I 
\ 

A method has been presented f o r  computing t h e  s e n s i t i v i t y  functi'ons 

f o r  cons tan t -coef f ic ien t  l i n e a r  systems, which requi res  fewer d i f f e r -  

e n t i a l  equation so lu t ions  than o ther  methods. The method is  based o n \  

l i n e a r  transformations of so lu t ions  t o  a bas i c  set of d i f f e r e n t i a l  I 

equations. For t h e  s ing le-output ,  multi- input system, these  equations 
I 

are p a r t i c u l a r l y  easy t o  implement. This technique f o r  computing s ingle-  

output s e n s i t i v i t y  functions has been implemented and has s u b s t a n t i a l l y  

reduced computation time. 

Some suggestions have been made f o r  simplifying t h e  computation of 

t he  i n t e g r a l  square of t h e  s e n s i t i v i t y  functions.  

used i n  t h e  method of quas i - l i nea r i za t ion  and i n  t h e  combined algorithm. 

These i n t e g r a l s  are 

I t  has been shown t h a t  t h e  generalized equations of motion theory 

discussed by Shinbrot can be used t o  der ive  t h e  r e s u l t s  presented by 
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Luenberger- and Bryson f o r  observers of lower order.  

equations of motion method a l s o  provides a use fu l  method f o r  designing 

such observers. 

The generalized 
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o r  

APPENDIX A 

MINIMIZATION ALGORITHM 

Many methods can be used t o  minimize t h e  c r i t e r i o n  

with respec t  t o  t h e  unknown parameters, y ,  i n  t he  cons t r a in t  equations 

Three of  t h e  more common methods a re :  

method, (2) t he  method of  quas i - l i nea r i za t ion ,  and (3) t h e  second-order 

grad ien t  method. 

r e t a ined  i n  a Taylor series expansion of J about an i n i t i a l  estimate 

of t h e  unknown parameters denoted here  by t h e  subsc r ip t  

(1) t h e  f i r s t - o r d e r  grad ien t  

A l l  of  these methods can be r e l a t e d  t o  t h e  terms 

N ,  

J (y )  JN + aJJ 6y + - 6y - a25 6y + higher order terms (A3) 
X=XN 2 a Y 2  1 x=xN 

BY wr i t ing  a J /  ay 1 X=XN and a2J/ a Y 2  I X=XN i n  terms of  yN we obtain 

1 1 2  



Using (A4) i n  (A3) w e  obtain 

f i r s t - o r d e r  grad ien t  

quas i - l i nea r i za t ion  

d t  6y 
' 

J(y)  - JN =AJ = - Ltf (Y -YN) 

tf a Y N  + 6 y T i  ( T ~ W  (2) d t  6y 

- -  1 6yTJtf ayN2 w(y - YN)dt 6y second-order grad ien t  (AS) 2 o  a Y 2  

The f i r s t - o r d e r  grad ien t  procedure r e t a i n s  only t h e  f i rs t  term i n  

t h e  expxision (AS).  I t  provides information on which d i r e c t i o n  the  

parameters should be changed t o  reduce the  cos t  J, 

An advantage of t h e  f i r s t - o r d e r  grad ien t  method i s  t h a t  s u f f i c i e n t l y  

small changes i n  t h e  unknown parameters cause a reduction i n  t h e  cos t .  

However, t he  ana lys t  has no way of determining the  s i z e  of t h e  parameter 

change. One method i s  t o  include a quadra t ic  penalty function i n  the  

expression f o r  t h e  f i r s t - o r d e r  grad ien t  cos t ;  i n  o ther  words, choose 6y 

t o  minimize 

where B i s  a p o s i t i v e  d e f i n i t e  weighting matrix.  The choice of B is  

dependent on the  ana lys t ' s  experience with t h e  s p e c i f i c  problem. 

The method of  quas i - l i nea r i za t ion  contains one addi t iona l  term i n  

the  Taylor s e r i e s  expansion. 

h i s t o r i e s  of 

i d e n t i f i a b i l i t y )  it i s  p o s i t i v e  d e f i n i t e .  Quas i - l inear iza t ion  can 

therefore  be considered a f i r s t - o r d e r  grad ien t  procedure with a s p e c i a l  

This term is quadra t ic  and i f  t he  time 

ayN/ay are l i n e a r l y  independent (which is  a condition f o r  
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penalty function. I t  has t h e  same advantages as the  f i r s t - o r d e r  

gradient  procedure i n  t h a t  t he  parameter changes w i l l  be i n  a d i r ec t ion  

t h a t  w i l l  reduce the  funct ion J, and only the  f i r s t - o r d e r  va r i a t ions  of 

the  model response are required.  I t  has the  added advantage t h a t  near 

t h e  minimum it begins t o  approach true second-order information s ince  the  

last term i n  the  second-order expansion, (A5), tends toward zero a t  the  

minimum (since y + yN). 

The second-order procedure contains a l l  t he  terms i n  the  

expansion (A5). 

from poin ts  near t he  minimum. However, it has two disadvantages. F i r s t ,  

I t  is  the  most e f f i c i e n t  adjustment algorithm t o  use 

i t  requires  second-order va r i a t ions  of t he  model response, and second, 

i f  the  i n i t i a l  es t imate  of t he  parameters is  not near t h e  minimum, the  

function may have a negative curvature s o  the  parameters w i l l  change i n  

the  wrong d i rec t ion .  

The quas i - l inear iza t ion  procedure appears t o  provide a good 

parameter adjustment scheme fo r  t h e  parameter i d e n t i f i c a t i o n  problem. 
~ 

In  order t o  r e l a t e  t he  formulation of the  method as  presented here t o  

t h a t  discussed i n  sec t ion  2 . 2 . 1 ,  it i s  only necessary t o  complete the  

square. 
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is not affected by parameter variations 6y, the minimization of (A8) 

is equivalent to the minimization discussed in section (2.2.1). 

I 
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APPENDIX B 

THE DESIGN OF LINEAR OBSERVERS BY USING 

INTEGRAL TRANSFORMS 

B . l  INTRODUCTION 

The Kalman f i l t e r  i s  a well-known technique f o r  es t imat ing the  

s ta te  of a system i n  t h e  presence o f  no ise  ( r e f s .  31, 3 2 ) .  This same 

s t r u c t u r e  can a l s o  be used t o  observe the  state i n  the  noise- f ree  prob- 

l e m  i f  t h e r e  are unknown i n i t i a l  condi t ions.  However, Luenberger and 

Bryson have developed elegant  and e x p l i c i t  procedures f o r  designing 

observers f o r  t h e  noise- f ree  problem t h a t  are of lower order  than t h e  

Kalman f i l t e r  s t r u c t u r e  ( r e f s .  36, 37, 41). They have shown t h a t  an 

estimate of t h e  s ta te  can be reconstructed from the  system measurements 

and t h e  response of a (n - m)th order  f i l t e r  where n i s  t h e  order  of 

t h e  system and m i s  the  number of  independent measurements. 

Luenberger has a l s o  shown t h a t  a l i n e a r  func t ion  of t h e  s t a t e  can be 

constructed from t h e  system measurements and t h e  response of an even 
~ 

lower order  f i l t e r .  

Although t h i s  r epor t  is  pr imar i ly  concerned with parameter 

es t imat ion,  t he re  is  a considerable s i m i l a r i t y  between t h i s  problem and 

t h e  problem of state observation. I n  p a r t i c u l a r ,  Shinbrot ' s  general iza-  

t i o n  of t h e  equations of  motion method through t h e  use of i n t e g r a l  

transforms i s  very similar t o  the  i d e a  developed by Luenberger and Bryson 

f o r  recons t ruc t ing  t h e  s ta te  by passing the  measurements through a 

dynamic f i l t e r .  

In  t h i s  appendix, both t h e  Kalman f i l t e r  s t r u c t u r e  and t h e  

s t r u c t u r e  f o r  observers of lower order  are obtained through t h e  use of 

i n t e g r a l  transforms. Although t h e  r e s u l t s  are not  bas i ca l ly  new, an 
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example w i l l  be used t o  show t h a t  t h i s  technique provides an a l t e r n a t i v e  

procedure f o r  designing observers of lower order .  

B . 2  PRELIMINARY DISCUSSION 

The problem can be s t a t e d  as follows: Given a constant c o e f f i c i e n t  

l i n e a r  system described by the  equations 

2 = FX i- GU x(0) = xo (B1) 

y = H x  (B2) 

with unknown i n i t i a l  conditions,  estimate the  cu r ren t  s ta te  of t h e  

system from t h e  measurements of t h e  system input  u and output y. The 

estimation of a l i n e a r  function of t h e  cur ren t  s ta te  i s  a simple 

extension of t h i s  problem and w i l l  a l s o  be considered. 

If t h e r e  a r e  m independent measurements (B2) provides m 

a lgebra ic  equations which a r e  l i n e a r  i n  t h e  n unknown components of t h e  

s t a t e  vector x. If m < n, t hese  equations cannot be solved f o r  x 

uniquely. 

s ides  of (B2) a re  d i f f e r e n t i a t e d  and (Bl) is  used t o  express the  r e s u l t -  

The number of a lgebra ic  equations can be increased i f  both 
- 

ing equations i n  terms of  x. This procedure r e s u l t s  i n  the  s e t  of 

equations 

where y i  ( f o r  each 

addi t iona l  measurement. If n independent equations are obtained by 

t h i s  procedure, w e  can, i n  p r inc ip l e ,  so lve  f o r  t h e  unknown s ta te  x and 

i )  is defined as ind ica ted  and can be considered an 
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t h e  system i s  s a i d  t o  be observable. The m a x i m u m  supe r sc r ip t  on y 

requi red  t o  obta in  n l i n e a r l y  independent equations i s  denoted by 

v - 1; v is  r e f e r r e d  t o  as t h e  obse rvab i l i t y  index f o r  t h e  system. If 

t h e  system i s  observable, v must s a t i s f y  t h e  inequal i ty ,  

n/m - 1 G v - 1 Q n - m (B4) 

If t h e  first n l i n e a r l y  independent equations i n  (B3) a r e  used t o  

es t imate  t h e  state,  each add i t iona l  measurement requi res  only a s i n g l e  

d i f f e r e n t i a t i o n  of a previous measurement. The s ta te  can therefore  be 

estimatyd by performing only n - m d i f f e r e n t i a t i o n s .  

The d i f f i c u l t y  with t h i s  approach i s  t h a t  i t  i s  usua l ly  not poss ib le  

t o  d i f f e r e n t i a t e  measured d a t a  even once, much less seve ra l  times. 

B . 3  THE DESIGN OF SUPPLEMENTAL OBSERVERS OR OBSERVERS OF LOWER ORDER 

An a l t e r n a t i v e  t o  d i f f e r e n t i a t i n g  (B2) i n  order t o  obtain n 

l i n e a r l y  independent equations i s  t o  t a k e  i n t e g r a l  transforms of  ( B 2 ) .  

This was t h e  idea  suggested by Shinbrot i n  t h e  i d e n t i f i c a t i o n  problem. 

The Laplace transform method, i l l u s t r a t e d  i n  example (2.2), i l l u s t r a t e s  

t h i s  type of procedure. In t h i s  s ec t ion  w e  

function, e , as t h e  method function. 

equations w e  w i l l  introduce a nota t ion  used 

s i  (t-T) 

w i l l  use the  convolution 

In  order t o  simplify t h e  

by Lessing (ref.  2 9 ) .  

Notation B. 1 

where z ( t )  i s  e i t h e r  a vec tor  or a s c a l a r  func t ion  of time, e Si (t-T) 

i s  a s c a l a r ,  and si is  a complex o r  r e a l  number. 

Two i d e n t i t i e s  which w i l l  prove he lpfu l  are: 

Iden t i ty  B . l  

S i t  
T ik ( t )  = x ( t )  + SiTiX(t) - xoe 

( In t eg ra t ion  by p a r t s )  
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Iden t i ty  B.2  

O A  =H x+o 

=HF 1 X + E  1 

\ 
Y = Y  

y 1 A  = T ~ ( ~ O + H F ; ' G ~ )  -1 

-1 -1 -1 -1 
y2 b T2(y1+HF1 F2 Gu) =HF1 F2  X+ E 2 -T2 E 1 

-1 -1 -1 -1 -1 
yv-liT v-1  ( Y ' - ~ + H F ~  F2 . . .Fi:lG~) =HF1 F2 . . .Fv - l x + ~ v - l -  - 1 -2  

-. T v-2' - *T2E1 

1 

-1 -1 TiX(t) = F i  X(t) - F i  GTiU(t) - FilxoeSit 

+ (B111 

where 

F i  4 [F - s ~ I ]  

and s i  is  not an eigenvalue of F. 

Proof: Take the  in t eg ra l  transform of both s ides  of (Bl).  Because 

eSit is  a scalar, t h i s  transform can be wr i t t en  

Tik = FTiX + GTju (B8) 

I f  i d e n t i t y  B 1  i s  used, equation (B8) can be wr i t t en  

(B91 
s i t  x ( t )  = [F - s i I ]TiX( t )  + G T j U  + xoe 

Since S i  i s  not an eigenvalue of F, t h i s  equation can be solved f o r  

Tix( t )  as given i n  equation (B7) and t h i s  concludes the  argument. 

Let us now augment the  set  of a lgebra ic  equations (B2) as suggested 
- 

i n  the  beginning of t h i s  sec t ion .  The i n t e g r a l  transform of (B2) 

can be expressed i n  terms of x by means of i d e n t i t y  (B2). This proce- 

dure can then be repeated a number of times i n  order  t o  obta in  the  
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where 

-1 s - t  = HF;~ . . . F -  xoe J 
€1 3 

a d  yJ ( for  each j) i s  M h e d  ab i n d k a t e d  and can be considered an 

addi t iona l  measurement. I f  t h e  system i s  observable, t h i s  sequence w i l l  

have n independent squations ( see  Lema B1 and theorem B 1  a t  t he  end 

09 t h i s  paragraph), which can be s o b d f o r  

measureaents yi and the functiase q. The yi can be computed but 

x as a function of the  

the .ci are not  knovmbecmse the initial c d i t i o n s  a r e  not known. 

Because the  terms E i  decay with a time constant dependent on s i  and 

because the  Si can be chosen almost a r b i t r a r i l y ,  x can be approximated 

by solving (BI1) w i t h  t he  ei s e t  eqwa) t o  zem. This approximation of 

I is referaed t o  a3 am e3ti.lark a) x &is denoted by i .  The e r r o r  

i n  the  estimate would be prsportiomaf to the ~i which are, i n  turn ,  

proportional t o  t h e  i n i t i a l .  conditions.  

C m n t :  If some of 

order t o  reduce t h e  error 

%he i n 3 t b t  cadi t ions  a r e  known o r  

can bt. irm im *b measurements y i  i n  

i n  the  estimate f o r  x .  Let XN, be a bes t  

i n i t i a l  guess a t  the  i n i t i a l  conditions.  The state can then be estimated 

by solving n independent equations i n  the  sequence 
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where 

~j = HF1 -1 F2 -1 . . . Fj -1  (x0 - )eSj t  
XNO 

-1 - 1  -1 HF1 F2 . . . F .  x 
3 No 

with t h e  si set  equal t o  zero. 

We w i l l  now show t h a t  i f  t he  system has observabi l i ty  index v, 

then the re  are n l i n e a r l y  independent equations i n  the  sequence (B11). 

Lemma B . l  If A, B, and C are th ree  matrices such t h a t  t he  matrix * 

product ABC i s  defined, then t h e  rank of t h i s  matrix product is  r e l a t e d  

t o  the  ranks of A,  B ,  and C by t h e  inequal i ty  

where 'A, rg, rC, and TABC denote t h e  rank of A, B,  C, and ABC, 

respec t ive ly ,  and where q and p are the  number of columns i n  A and B ,  

r espec t ive ly .  ~ 

Proof:  Sylves te r ' s  i nequa l i ty  f o r  t h e  rank of t he  product of two 

matrices, AB, states t h a t  

This implies 

and t h i s  concludes t h e  argument. 

Theorem B . l :  If t h e  observabi l i ty  index f o r  a system (B.l) i s  v, 

then the  matrix 

12  1 



01 = 

H 

F- 
v-1 

has rank n. 

Proof: 

H 

HFil . . . F-l 
V -  

HF1F2 . . . Fv-l 

H 

-1  
[F1F2 . . . F v-1 ] 

because the  Fi commute. I n  addi t ion  

HF1F2 . . . F 
V -  

H 

1 I a l I  

0 1  

0 

0 0  

1 
v- 1 ai1 . . .  a I 

2 ay I a2 I v-1 

I 

0 I 

- 
HF’ -’ 
HFv - 2 

HF 

H 

where I i s  an m x m i d e n t i t y  matrix and where t h e  a j  are the  

c o e f f i c i e n t s  of t h e  polynomials. 

i 

( A  + S j )  (X + s  ) . . . (A +sv-l = x V - j  +alA j v-j-1 + a2A j v-j-2+. . , + a j 
j +1 v-j 

The first matrix on the  r i g h t  of ( B 1 4 )  has rank nm, t h e  second matrix 

on t h e  r i g h t  of (B14) has rank n, and because each Fi has rank n, 
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t h e  second matrix on the  r i g h t  of (B13) has rank n. By Lemma B . l  

nm + n + n - nm - n G r O I  min(nm, n, n) 

( t he  rank of 01) equals n and t h i s  concludes t h e  rOI which imp 1 i es 

argument . 
If t h e  f i r s t  n l i n e a r l y  independent equations i n  (B12) are used 

t o  so lve  f o r  2, each equation i n  addi t ion  t o  the  first m equations can 

be r ea l i zed  by passing a l i n e a r  combination of previously generated 

"measurements" through a f i r s t - o r d e r  f i l t e r  with i n i t i a l  condition 

defined by t h e  appropriate component of YN,. A t o t a l  of n - m addi- 

t i o n a l  equations is required.  

using a f i l t e r  having order n - m w i t h  v - 1 d i s t i n c t  and almost 

We can therefore  estimate the  s ta te  by 

a r b i t r a r i l y  chosen eigenvalues. The f i l t e r  can a l s o  be designed with 

n - m d i s t i n c t  eigenvalues by using d i f f e r e n t  transformations on each 

of t he  measurements. 

another method involves pu t t ing  t h e  system i n t o  t h e  canonical form 

One method involves a tedious s e l e c t i o n  procedure; 
- 

discussed i n  Chapter I11 and applying the  s e l e c t i o n  procedure defined 

above f o r  each ind iv idua l  single-output subsystem. This la t ter  procedure 

was used i n  re ference  37. 

r e s u l t .  

We therefore  obta in  t h e  following important 

Theorem B . 2 :  Given a nth-order system (Bl) which is  observable 

through m independent measurements ( B 2 ) ,  an estimate of t h e  system 

s t a t e  can be constructed from the  measurements of  t he  input  and output 

and t h e  response of a (n - m)th-order f i l ter .  

w i l l  decay with a time constant equal t o  t h e  negative of t he  real p a r t  of 

t he  inverse  of t he  eigenvalues i n  t h e  f i l t e r .  

f i l t e r  can be chosen a r b i t r a r i l y ,  provided they do not equal any of t h e  

system's eigenvalues. 

The e r r o r  i n  t h e  estimate 

The eigenvalues of t h e  
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Comment: The eigenvalues of t he  observer can equal the  eigenvalues 

of t he  system, but  i n  t h i s  case the transformation a c t s  only on the  sys- 

tem input  and not  on the  measurement. If S i  i s  an eigenvalue of t h e  

system, an equation r e l a t i n g  x ( t )  and T i U  can be obtained by taking 

the  inner  product of equation (B9) with the  eigenvector associated with 

F i  . 
In  many cases a complete estimate of t he  s ta te  is  not required.  

For example, i f  w e  a r e  designing a s ing le  input  feedback control  l a w ,  

w e  may requi re  only a s ing le  l i nea r  combination of t he  states. I t  i s  

therefore  only necessary t o  estimate t h i s  l i n e a r  funct ion.  

shown i n  t h i s  sec t ion  t h a t  an estimate of t h e  s ta te  is  given by a l i n e a r  

transformation on the  augmented measurements (y’, i = 0, 1, . . . , v - 1). 

This can be denoted by the  matrix equation. 

I t  has been 

where D i s  a n x (v x m) matrix. A l i nea r  combination of t h e  s t a t e s  

can therefore  be estimated by a l i nea r  combination of t h e  augmented 

measurements. This l inear combination can be wr i t ten  

m 

u ( t )  = 

i= 1 

where y j  is  t h e  i t h  component of y j .  The individual  terms i n  the  

above summation can be defined 

i 

j = l  
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and are the  so lu t ions  t o  the  s i n g l e  output systems 

31 0 o . . . o  

1 s2 0 0 

0 0  v, 1 
1 s  

Y i  + Gu 

Because these systems have iden t i ca l  dynamics f o r  a l l  i, t h e  summation 

of t h e  z i  can be rea l ized  by a s i n g l e  system o r  order v - 1. This 

provides a second important r e s u l t ,  - which was a l so  first proved by 

Luenberger . 
Theorem B.3: If the  system i s  observable, then an estimate of an 

a r b i t r a r y  l i n e a r  funct ion of t h e  s ta te  can be constructed from the  

measurements of t h e  input  and output and t h e  response of a (u - 1) th  

order f i l t e r .  

Example B . l  

Consider t he  l inear ized  longi tudinal  equations of motion f o r  an 

Longitudinal Equations of Motion f o r  an Aircraft 

aircraft including both the  sho r t  and long per iod modes. Assume t h a t  t he  

a t t i t u d e  rate, forward ve loc i ty ,  and t h e  e leva tor  input  are the  only 

- measured var iab les .  The equations describing the  system and i t s  

measurements can be wr i t ten  
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- 
al l  a12 a13 

0 0 1 

a31 a33 

a41 0 1 - 

al 4 

0 

a3 4 

a44 

+ 

. .  
0 

0 

b3 

b4 - .  

Y 2  = 9 

i )  Construct a s ta te  estimation of order n - m = 2 having time 

constants  of 0.5 second. 

i i )  Construct a system of order v - 1 = 1 t h a t  can be used t o  

estimate an a r b i t r a r y  l i nea r  combination of t he  s t a t e s .  

Solut ion : 

i )  If e -2(t-T) is used as the  method function and de f in i t i on  1 and 

i d e n t i t y  1 are applied,  then the  i n t e g r a l  transform of (B15) 

a1 2 

2 

0 

0 

aI 3 

1 

a3 3+2 

1 

i s  given by 

(B 16) 
- 2 t  e 

If the  i n i t i a l  conditions a re  known, then, because u ( t )  and q ( t )  

are measured and s ince  w e  can generate Tlu( t )  and T lq ( t ) ,  equation (B16) 

provides four  equations i n  t h e  four  unknowns 0 ( t ) ,  a ( t ) ,  T l 0 ( t ) ,  and 

T la ( t ) .  These equations can be solved f o r  T l a ( t ) ,  T l 0 ( t ) ,  0 ( t ) ,  and 

a ( t )  i f  t h e  th i rd ,  first, second and four th  equations, respect ively,  are 

used as indicaeed below. 

(B171 

126 



I 

Since a l l  of the  terms on the  r i g h t  hand s i d e  of these  equations are 

known except f o r  t he  i n i t i a l  condi t ions,  estimates for 0 ( t )  and a ( t )  

can be obtained by neglecting t h e  i n i t i a l  conditions.  

estimates would be 

The e r r o r s  i n  the  

The s ta te  observer therefore  cons is t s  of two i d e n t i c a l  and uncoupled 

f i r s t - o r d e r  systems. Their s t ruc tu res  a re  indicated i n  f igu re  18. 
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9 *-&--- 
u 

9 

a31 P i  = a41 - (am + 2) - 
a34 

(a33 + 2) 
P2 = 1 - (a44 + 2) ~ 

a34 a12 a12 a34 

Q 3 = 2 - -  a14 b3 P3 = b4 - (a44 + 2) a34 b3 
a12 a34 

(a44 + 2) 
a14 P4 = - 

a34 
Q4 = - 2  - 

a12 a34 

2 
Q5 = F~ 

Figure 18.- Estimation of a t t i t u d e  and angle of a t t ack  from 
measurements of a t t i t u d e  r a t e  and forward ve loc i ty .  
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i i )  Because the  s ta te  observer was constructed s o  t h a t  both 

unmeasured states were estimated by iden t i ca l  f i r s t - o r d e r  systems, a 

l i nea r  combination of t h e  estimated states can be obtained by using a 

s ing le  f i r s t - o r d e r  system. 

t i o n  of the  system states, clu(t) + c28(t) + c3q( t )  + cqcl(t), can 

therefore  be estimated as shown i n  figure 19. 

B . 4  LINEAR OBSERVER OF ORDER n 

The estimation of an a r b i t r a r y  l i nea r  combina- 

Consider t he  i n t e g r a l  transform of (Bl) with t h e  n x n matrix 

e FNCt-T) as  t h e  method function, 

If t h e  l e f t  hand s i d e  of (B21)  i s  in tegra ted  by p a r t s  and the  terms are 

combined, t h i s  equation can be wr i t ten  

f t  eFN(t-T){[F - FN]x(T) + Gu(.c))dT + eFNtxo CB22) 
‘0 - 

If FN i s  chosen s o  t h a t  F - FN 

t o  obtain a re la t ionship  between 

F t  x ( t )  = r t  eFN(t-T){Ky(.r) + Gu(.r))d.r + e N xo 

so t h a t  an estimate of x ( t )  is  given by 

Gu(T) )dT 

and the  e r r o r  i n  t h e  estimate is  given by 

x ( t )  - ;(t) = eFNtxo 



+ 

W 
K 'a 
n- 
Q z a 
6 
.. 

W 
I- 
O 
2 

w w  
0 0  
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Since it i s  poss ib le  t o  a r b i t r a r i l y  place the  eigenvalues of 

an appropriate  choice of 

t o  zero a r b i t r a r i l y  fast. 

d i f f e r e n t i a l  equation 

F - KH by 

K,  t h e  e r r o r  i n  the  estimate can be made t o  go 

Equation (B24) is  t h e  so lu t ion  t o  t h e  

which has t h e  same s t r u c t u r e  as  t h e  state estimators s tudied by Kalman 

and Luenberger . 
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NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL TRANSLATIONS : Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS : 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Ttchnology Utilization Reports and 
Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. PO546 


